为了降低内存成本,我使用以下命令指定了我的 Pandas 数据帧的 dtypes astype():
df['A'] = df['A'].astype(int8)
Run Code Online (Sandbox Code Playgroud)
然后我to_csv()用来存储它,但是当我read_csv()再次读取它并检查它时dtypes,我发现它仍然存储在int64. 如何在将数据保存在本地存储中的同时保留数据类型?
A modification of #Aaron N. Brock to allow parse_dates as well (plus not change original DataFrame):
def to_csv(df, path):
# Prepend dtypes to the top of df
df2 = df.copy()
df2.loc[-1] = df2.dtypes
df2.index = df2.index + 1
df2.sort_index(inplace=True)
# Then save it to a csv
df2.to_csv(path, index=False)
def read_csv(path):
# Read types first line of csv
dtypes = {key:value for (key,value) in pd.read_csv(path,
nrows=1).iloc[0].to_dict().items() if 'date' not in value}
parse_dates = [key for (key,value) in pd.read_csv(path,
nrows=1).iloc[0].to_dict().items() if 'date' in value]
# Read the rest of the lines with the types from above
return pd.read_csv(path, dtype=dtypes, parse_dates=parse_dates, skiprows=[1])
Run Code Online (Sandbox Code Playgroud)
这是一种方法:
import pandas as pd
# Create Example data with types
df = pd.DataFrame({
'words': ['foo', 'bar', 'spam', 'eggs'],
'nums': [1, 2, 3, 4]
}).astype(dtype={
'words': 'object',
'nums': 'int8'
})
def to_csv(df, path):
# Prepend dtypes to the top of df (from /sf/answers/3038611551/)
df.loc[-1] = df.dtypes
df.index = df.index + 1
df.sort_index(inplace=True)
# Then save it to a csv
df.to_csv(path, index=False)
def read_csv(path):
# Read types first line of csv
dtypes = pd.read_csv('tmp.csv', nrows=1).iloc[0].to_dict()
# Read the rest of the lines with the types from above
return pd.read_csv('tmp.csv', dtype=dtypes, skiprows=[1])
print('Before: \n{}\n'.format(df.dtypes))
to_csv(df, 'tmp.csv')
df = read_csv('tmp.csv')
print('After: \n{}\n'.format(df.dtypes))
Run Code Online (Sandbox Code Playgroud)
输出:
Before:
nums int8
words object
dtype: object
After:
nums int8 # still int8
words object
dtype: object
Run Code Online (Sandbox Code Playgroud)