在训练的张量流网络中获得所有输入的相同预测值

mlz*_*lz7 8 python neural-network tensorflow

我创建了一个张量流网络,用于从该数据集中读取数据(注意:此数据集中的信息仅用于测试目的而不是真实的):在此输入图像描述我正在尝试建立一个张量流网络,旨在从根本上预测"已退出"列中的值.我的网络构造为采用11个输入,通过relu激活通过2个隐藏层(每个6个神经元),并使用sigmoid激活函数输出单个二进制值,以产生概率分布.我正在使用梯度下降优化器和均方误差成本函数.但是,在我的训练数据训练网络并预测我的测试数据之后,我的所有预测值都大于0.5意味着可能是真的,我不确定问题是什么:

X_train, X_test, y_train, y_test = train_test_split(X_data, y_data, test_size=0.2, random_state=101)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.fit_transform(X_test)

training_epochs = 200
n_input = 11
n_hidden_1 = 6
n_hidden_2 = 6
n_output = 1

def neuralNetwork(x, weights):
     layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
     layer_1 = tf.nn.relu(layer_1)
     layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
     layer_2 = tf.nn.relu(layer_2)
     output_layer = tf.add(tf.matmul(layer_2, weights['output']), biases['output'])
     output_layer = tf.nn.sigmoid(output_layer)
     return output_layer

weights = {
    'h1': tf.Variable(tf.random_uniform([n_input, n_hidden_1])),
    'h2': tf.Variable(tf.random_uniform([n_hidden_1, n_hidden_2])),
    'output': tf.Variable(tf.random_uniform([n_hidden_2, n_output]))
}

biases = {
    'b1': tf.Variable(tf.random_uniform([n_hidden_1])),
    'b2': tf.Variable(tf.random_uniform([n_hidden_2])),
    'output': tf.Variable(tf.random_uniform([n_output]))
}

x = tf.placeholder('float', [None, n_input]) # [?, 11]
y = tf.placeholder('float', [None, n_output]) # [?, 1]

output = neuralNetwork(x, weights)
cost = tf.reduce_mean(tf.square(output - y))
optimizer = tf.train.AdamOptimizer().minimize(cost)

with tf.Session() as session:
    session.run(tf.global_variables_initializer())
    for epoch in range(training_epochs):
        session.run(optimizer, feed_dict={x:X_train, y:y_train.reshape((-1,1))})
    print('Model has completed training.')
    test = session.run(output, feed_dict={x:X_test})
    predictions = (test>0.5).astype(int)
    print(predictions)
Run Code Online (Sandbox Code Playgroud)

所有帮助表示赞赏!我一直在查看与我的问题有关的问题,但没有一个建议似乎有帮助.

lda*_*vid 5

初步假设:出于安全原因,我不会从个人链接访问数据。如果您可以仅基于安全/持久工件创建可重现的代码片段,那就更好了。
但是,我可以确认您的问题发生在您的代码针对 运行时keras.datasets.mnist,有一个小的变化:每个样本都与一个标签0: odd1: even.

简短的回答:你搞砸了初始化。更改tf.random_uniformtf.random_normal并将偏差设置为 确定性0

实际答案:理想情况下,您希望模型开始随机预测,接近0.5. 这将防止 sigmoid 输出的饱和,并在训练的早期阶段导致大梯度。

sigmoid 方程。是s(y) = 1/(1 + e**-y),并且s(y) = 0.5 <=> y = 0。因此,该层的输出y = w * x + b必须为0

如果您使用StandardScaler,则您的输入数据遵循高斯分布,均值 = 0.5,标准差 = 1.0。您的参数必须支持这种分布!但是,您已经使用 初始化了您的偏差tf.random_uniform,它统一地从[0, 1)区间中提取值。

通过从 开始你的偏见0y将接近于0

y = w * x + b = sum(.1 * -1, .9 * -.9, ..., .1 * 1, .9 * .9) + 0 = 0
Run Code Online (Sandbox Code Playgroud)

所以你的偏见应该是:

biases = {
    'b1': tf.Variable(tf.zeros([n_hidden_1])),
    'b2': tf.Variable(tf.zeros([n_hidden_2])),
    'output': tf.Variable(tf.zeros([n_output]))
}
Run Code Online (Sandbox Code Playgroud)

这足以输出小于 的数字0.5

[1.        0.4492423 0.4492423 ... 0.4492423 0.4492423 1.       ]
predictions mean: 0.7023628
confusion matrix:
[[4370 1727]
 [1932 3971]]
accuracy: 0.6950833333333334
Run Code Online (Sandbox Code Playgroud)

进一步更正:

  • 您的neuralNetwork函数不带biases参数。相反,它使用在另一个作用域中定义的那个,这似乎是一个错误。

  • 您不应该将缩放器与测试数据相匹配,因为您将丢失训练中的统计数据,并且因为它违反了该数据块纯粹是观察性的原则。做这个:

     scaler = StandardScaler()
     x_train = scaler.fit_transform(x_train)
     x_test = scaler.transform(x_test)
    
    Run Code Online (Sandbox Code Playgroud)
  • 将 MSE 与 sigmoid 输出一起使用是非常罕见的。改用二元交叉熵:

     logits = tf.add(tf.matmul(layer_2, weights['output']), biases['output'])
     output = tf.nn.sigmoid(logits)
     cost = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=logits)
    
    Run Code Online (Sandbox Code Playgroud)
  • 从正态分布初始化权重更可靠:

     weights = {
         'h1': tf.Variable(tf.random_uniform([n_input, n_hidden_1])),
         'h2': tf.Variable(tf.random_uniform([n_hidden_1, n_hidden_2])),
         'output': tf.Variable(tf.random_uniform([n_hidden_2, n_output]))
     }
    
    Run Code Online (Sandbox Code Playgroud)
  • 您在每个时期提供整个训练数据集,而不是批处理它,这是 Keras 中的默认设置。因此,假设 Keras 实现会更快收敛并且结果可能不同是合理的。

通过制作一些柚木,我设法实现了以下结果:

import tensorflow as tf
from keras.datasets.mnist import load_data
from sacred import Experiment
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

ex = Experiment('test-16')


@ex.config
def my_config():
    training_epochs = 200
    n_input = 784
    n_hidden_1 = 32
    n_hidden_2 = 32
    n_output = 1


def neuralNetwork(x, weights, biases):
    layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
    layer_1 = tf.nn.relu(layer_1)
    layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
    layer_2 = tf.nn.relu(layer_2)
    logits = tf.add(tf.matmul(layer_2, weights['output']), biases['output'])
    predictions = tf.nn.sigmoid(logits)
    return logits, predictions


@ex.automain
def main(training_epochs, n_input, n_hidden_1, n_hidden_2, n_output):
    (x_train, y_train), _ = load_data()
    x_train = x_train.reshape(x_train.shape[0], -1).astype(float)
    y_train = (y_train % 2 == 0).reshape(-1, 1).astype(float)

    x_train, x_test, y_train, y_test = train_test_split(x_train, y_train, test_size=0.2, random_state=101)
    print('y samples:', y_train, y_test, sep='\n')

    scaler = StandardScaler()
    x_train = scaler.fit_transform(x_train)
    x_test = scaler.transform(x_test)

    weights = {
        'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
        'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
        'output': tf.Variable(tf.random_normal([n_hidden_2, n_output]))
    }

    biases = {
        'b1': tf.Variable(tf.zeros([n_hidden_1])),
        'b2': tf.Variable(tf.zeros([n_hidden_2])),
        'output': tf.Variable(tf.zeros([n_output]))
    }

    x = tf.placeholder('float', [None, n_input])  # [?, 11]
    y = tf.placeholder('float', [None, n_output])  # [?, 1]

    logits, output = neuralNetwork(x, weights, biases)
    # cost = tf.reduce_mean(tf.square(output - y))
    cost = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=logits)
    optimizer = tf.train.AdamOptimizer().minimize(cost)

    with tf.Session() as session:
        session.run(tf.global_variables_initializer())
        try:
            for epoch in range(training_epochs):
                print('epoch #%i' % epoch)
                session.run(optimizer, feed_dict={x: x_train, y: y_train})

        except KeyboardInterrupt:
            print('interrupted')

        print('Model has completed training.')
        p = session.run(output, feed_dict={x: x_test})
        p_labels = (p > 0.5).astype(int)

        print(p.ravel())
        print('predictions mean:', p.mean())

        print('confusion matrix:', confusion_matrix(y_test, p_labels), sep='\n')
        print('accuracy:', accuracy_score(y_test, p_labels))
Run Code Online (Sandbox Code Playgroud)
[0.        1.        0.        ... 0.0302309 0.        1.       ]
predictions mean: 0.48261687
confusion matrix:
[[5212  885]
 [ 994 4909]]
accuracy: 0.8434166666666667
Run Code Online (Sandbox Code Playgroud)