Dat*_*ted 1 dataframe python-2.7 apache-spark apache-spark-sql pyspark
我正在寻找一种方法来按小时聚合我的数据。我想首先在我的 evtTime 中只保留几个小时。我的 DataFrame 看起来像这样:
Row(access=u'WRITE', 
    agentHost=u'xxxxxx50.haas.xxxxxx', 
    cliIP=u'192.000.00.000', 
    enforcer=u'ranger-acl', 
    event_count=1, 
    event_dur_ms=0, 
    evtTime=u'2017-10-01 23:03:51.337', 
    id=u'a43d824c-1e53-439b-b374-96b76bacf714', 
    logType=u'RangerAudit', 
    policy=699, 
    reason=u'/project-h/xxxx/xxxx/warehouse/rocq.db/f_crcm_res_temps_retrait', 
    repoType=1, 
    reqUser=u'rocqphadm', 
    resType=u'path', 
    resource=u'/project-h/xxxx/xxxx/warehouse/rocq.db/f_crcm_res_temps_retrait', 
    result=1, 
    seq_num=342976577) 
我的目标随后是按 reqUser 分组并计算 event_count 的总和。我试过这个:
func =  udf (lambda x: datetime.datetime.strptime(x, '%Y-%m-%d %H:%M:%S.%f'), DateType())
df1 = df.withColumn('DATE', func(col('evtTime')))
metrics_DataFrame = (df1
                 .groupBy(hour('DATE'), 'reqUser')
                 .agg({'event_count': 'sum'})
                )
这是结果:
[Row(hour(DATE)=0, reqUser=u'A383914', sum(event_count)=12114),
Row(hour(DATE)=0, reqUser=u'xxxxadm', sum(event_count)=211631),
Row(hour(DATE)=0, reqUser=u'splunk-system-user', sum(event_count)=48),
Row(hour(DATE)=0, reqUser=u'adm', sum(event_count)=7608),
Row(hour(DATE)=0, reqUser=u'X165473', sum(event_count)=2)]
我的目标是得到这样的东西:
[Row(hour(DATE)=2017-10-01 23:00:00, reqUser=u'A383914', sum(event_count)=12114),
Row(hour(DATE)=2017-10-01 22:00:00, reqUser=u'xxxxadm', sum(event_count)=211631),
Row(hour(DATE)=2017-10-01 08:00:00, reqUser=u'splunk-system-user', sum(event_count)=48),
Row(hour(DATE)=2017-10-01 03:00:00, reqUser=u'adm', sum(event_count)=7608),
Row(hour(DATE)=2017-10-01 11:00:00, reqUser=u'X165473', sum(event_count)=2)]
有多种可能的解决方案,最简单的一种是仅使用所需的部分作为字符串:
from pyspark.sql.functions import substring, to_timestamp
df = spark.createDataFrame(["2017-10-01 23:03:51.337"], "string").toDF("evtTime")
df.withColumn("hour", substring("evtTime", 0, 13)).show()
# +--------------------+-------------+                                            
# |             evtTime|         hour|
# +--------------------+-------------+
# |2017-10-01 23:03:...|2017-10-01 23|
# +--------------------+-------------+
或作为时间戳:
df.withColumn("hour", to_timestamp(substring("evtTime", 0, 13), "yyyy-MM-dd HH")).show()
# +--------------------+-------------------+
# |             evtTime|               hour|
# +--------------------+-------------------+
# |2017-10-01 23:03:...|2017-10-01 23:00:00|
# +--------------------+-------------------+
你也可以date_format:
from pyspark.sql.functions import date_format, col
df.withColumn("hour", date_format(col("evtTime").cast("timestamp"), "yyyy-MM-dd HH:00")).show()
# +--------------------+----------------+
# |             evtTime|            hour|
# +--------------------+----------------+
# |2017-10-01 23:03:...|2017-10-01 23:00|
# +--------------------+----------------+
或date_trunc:
from pyspark.sql.functions import date_trunc
df.withColumn("hour", date_trunc("hour", col("evtTime").cast("timestamp"))).show()
# +--------------------+-------------------+                                      
# |             evtTime|               hour|
# +--------------------+-------------------+
# |2017-10-01 23:03:...|2017-10-01 23:00:00|
# +--------------------+-------------------+
| 归档时间: | 
 | 
| 查看次数: | 1728 次 | 
| 最近记录: |