Luc*_*ias 6 python keras tensorflow
对于 NN 的自定义损失,我使用该函数
. u,给定一对 (t,x),间隔中的两个点,是我的神经网络的输出。问题是我被困在如何使用K.gradient(K 是 TensorFlow 后端)计算二阶导数:
def custom_loss(input_tensor, output_tensor):
def loss(y_true, y_pred):
# so far, I can only get this right, naturally:
gradient = K.gradients(output_tensor, input_tensor)
# here I'm falling badly:
# d_t = K.gradients(output_tensor, input_tensor)[0]
# dd_x = K.gradient(K.gradients(output_tensor, input_tensor),
# input_tensor[1])
return gradient # obviously not useful, just for it to work
return loss
Run Code Online (Sandbox Code Playgroud)
我所有基于 的Input(shape=(2,))尝试都是上面代码片段中注释行的变体,主要是试图找到结果张量的正确索引。
果然,我对张量的工作原理缺乏了解。顺便说一句,我知道在 TensorFlow 本身中我可以简单地使用tf.hessian,但我注意到使用 TF 作为后端时它不存在。
为了让一个K.gradients()层像这样工作,你必须将它包含在一个Lambda()层中,否则不会创建一个完整的 Keras 层,并且你不能链接它或训练它。所以这段代码将工作(测试):
import keras
from keras.models import *
from keras.layers import *
from keras import backend as K
import tensorflow as tf
def grad( y, x ):
return Lambda( lambda z: K.gradients( z[ 0 ], z[ 1 ] ), output_shape = [1] )( [ y, x ] )
def network( i, d ):
m = Add()( [ i, d ] )
a = Lambda(lambda x: K.log( x ) )( m )
return a
fixed_input = Input(tensor=tf.constant( [ 1.0 ] ) )
double = Input(tensor=tf.constant( [ 2.0 ] ) )
a = network( fixed_input, double )
b = grad( a, fixed_input )
c = grad( b, fixed_input )
d = grad( c, fixed_input )
e = grad( d, fixed_input )
model = Model( inputs = [ fixed_input, double ], outputs = [ a, b, c, d, e ] )
print( model.predict( x=None, steps = 1 ) )
Run Code Online (Sandbox Code Playgroud)
def network模型f( x ) = log( x + 2 ) at x = 1。def grad是进行梯度计算的地方。此代码输出:
[数组([1.0986123], dtype=float32), 数组([0.33333334], dtype=float32), 数组([-0.11111112], dtype=float32), 数组([0.07407408], dtype=float[32), 数组0.07407409],dtype=float32)]
这是log( 3 ) , ⅓ , -1 / 3 2 , 2 / 3 3 , -6 / 3 4的正确值。
作为参考,普通 TensorFlow 中的相同代码(用于测试):
import tensorflow as tf
a = tf.constant( 1.0 )
a2 = tf.constant( 2.0 )
b = tf.log( a + a2 )
c = tf.gradients( b, a )
d = tf.gradients( c, a )
e = tf.gradients( d, a )
f = tf.gradients( e, a )
with tf.Session() as sess:
print( sess.run( [ b, c, d, e, f ] ) )
Run Code Online (Sandbox Code Playgroud)
输出相同的值:
[1.0986123, [0.33333334], [-0.11111112], [0.07407408], [-0.07407409]]
tf.hessians()确实返回二阶导数,这是链接 two 的简写tf.gradients()。hessians不过Keras 后端没有,因此您必须将两个K.gradients().
如果由于某种原因上述方法均无效,那么您可能需要考虑在数值上近似二阶导数,并在较小的ε距离上取差值。这基本上将每个输入的网络增加了三倍,因此除了缺乏准确性之外,该解决方案还引入了严重的效率考虑。无论如何,代码(已测试):
import keras
from keras.models import *
from keras.layers import *
from keras import backend as K
import tensorflow as tf
def network( i, d ):
m = Add()( [ i, d ] )
a = Lambda(lambda x: K.log( x ) )( m )
return a
fixed_input = Input(tensor=tf.constant( [ 1.0 ], dtype = tf.float64 ) )
double = Input(tensor=tf.constant( [ 2.0 ], dtype = tf.float64 ) )
epsilon = Input( tensor = tf.constant( [ 1e-7 ], dtype = tf.float64 ) )
eps_reciproc = Input( tensor = tf.constant( [ 1e+7 ], dtype = tf.float64 ) )
a0 = network( Subtract()( [ fixed_input, epsilon ] ), double )
a1 = network( fixed_input, double )
a2 = network( Add()( [ fixed_input, epsilon ] ), double )
d0 = Subtract()( [ a1, a0 ] )
d1 = Subtract()( [ a2, a1 ] )
dv0 = Multiply()( [ d0, eps_reciproc ] )
dv1 = Multiply()( [ d1, eps_reciproc ] )
dd0 = Multiply()( [ Subtract()( [ dv1, dv0 ] ), eps_reciproc ] )
model = Model( inputs = [ fixed_input, double, epsilon, eps_reciproc ], outputs = [ a0, dv0, dd0 ] )
print( model.predict( x=None, steps = 1 ) )
Run Code Online (Sandbox Code Playgroud)
输出:
[数组([1.09861226]),数组([0.33333334]),数组([-0.1110223])]
(这只会得到二阶导数。)
| 归档时间: |
|
| 查看次数: |
2050 次 |
| 最近记录: |