Edu*_*ira 1 python math numpy scipy numerical-methods
我有以下功能
import numpy as np
import scipy.optimize as optimize
def x(theta1, theta2, w, h, L1, L2):
sint1 = np.sin(theta1)
cost1 = np.cos(theta1)
sint2 = np.sin(theta2)
cost2 = np.cos(theta2)
i1 = L1 * (cost1 + cost2) + w
j1 = L1 * (sint1 - sint2) - h
D = np.sqrt((L1*(cost2-cost1)+w)**2+(L1*(sint2-sint1)+h)**2)
a = (0.25)*np.sqrt((4*L2**2-D**2)*D**2)
return i1/2 + 2*j1*a/(D**2)
def y(theta1, theta2, w, h, L1, L2):
sint1 = np.sin(theta1)
cost1 = np.cos(theta1)
sint2 = np.sin(theta2)
cost2 = np.cos(theta2)
i2 = L1 * (sint1 + sint2) + h
j2 = L1 * (cost1 - cost2) - w
D = np.sqrt((L1*(cost2-cost1)+w)**2+(L1*(sint2-sint1)+h)**2)
a = (0.25)*np.sqrt((4*L2**2-D**2)*D**2)
return i2/2 - 2*j2*a/(D**2)
def det_jacobiano(theta, w, h, L1, L2,eps):
theta1,theta2 = theta
dxdt1 = (-x(theta1+eps, theta2, w, h, L1, L2)+4*x(theta1, theta2, w, h, L1, L2)-3*x(theta1-eps, theta2, w, h, L1, L2))/(2*eps)
dxdt2 = (-x(theta1, theta2+eps, w, h, L1, L2)+4*x(theta1, theta2, w, h, L1, L2)-3*x(theta1, theta2-eps, w, h, L1, L2))/(2*eps)
dydt1 = (-y(theta1+eps, theta2, w, h, L1, L2)+4*y(theta1, theta2, w, h, L1, L2)-3*y(theta1-eps, theta2, w, h, L1, L2))/(2*eps)
dydt2 = (-y(theta1, theta2+eps, w, h, L1, L2)+4*y(theta1, theta2, w, h, L1, L2)-3*y(theta1, theta2-eps, w, h, L1, L2))/(2*eps)
return dxdt1*dydt2 - dxdt2*dydt1
Run Code Online (Sandbox Code Playgroud)
我想找到使 det_jacobiano 为 0 的 theta 1 和 theta2 的值。如您所见,函数 det_jacobiano 在函数 x 和 y 中求值。
当我尝试使用 scipy.optimize 找到根时
initial_guess = [2.693, 0.4538]
result = optimize.root(det_jacobiano, initial_guess,tol=1e-8,args=(20,0,100,100,1e-10),method='lm')
Run Code Online (Sandbox Code Playgroud)
Obtengo el 错误: TypeError: Improper input: N=2 must not exceed M=1
求根是等效于求解方程组的数值计算。同样的基本约束适用:您需要与未知数一样多的方程。
中的所有根查找例程都scipy期望第一个参数是返回 N 个值的 N 个变量的函数。本质上,第一个参数意味着等价于具有 N 个未知数的 N 个方程组。因此,您的问题是det_jacobiano需要 2 个变量但只返回一个值。
您不能在当前公式中使用求根方法,但您仍然可以进行最小化。将最后一行det_jacobiano改为:
return np.abs(dxdt1*dydt2 - dxdt2*dydt1)
Run Code Online (Sandbox Code Playgroud)
然后使用optimize.minimize:
result = optimize.minimize(det_jacobiano, initial_guess, tol=1e-8, args=(20,0,100,100,1e-10), method='Nelder-Mead')
Run Code Online (Sandbox Code Playgroud)
输出:
final_simplex: (array([[ 1.47062275, -3.46178428],
[ 1.47062275, -3.46178428],
[ 1.47062275, -3.46178428]]), array([ 0., 0., 0.]))
fun: 0.0
message: 'Optimization terminated successfully.'
nfev: 330
nit: 137
status: 0
success: True
x: array([ 1.47062275, -3.46178428])
Run Code Online (Sandbox Code Playgroud)
result.fun保存最终最小化的值(确实0.0,就像您想要的那样),并result.x保存theta1, theta2产生那个的值0.0。