按组添加模型预测

uli*_*a2_ 4 grouping regression r dplyr modelr

我正在按数据集中的组估计回归模型,然后我希望为所有组添加正确的拟合值。

我正在尝试以下操作:

library(dplyr)
library(modelr)

df <- tribble(
  ~year, ~country, ~value,
  2001, "France", 55, 
  2002, "France", 53, 
  2003, "France", 31, 
  2004, "France", 10, 
  2005, "France", 30, 
  2006, "France", 37, 
  2007, "France", 54, 
  2008, "France", 58, 
  2009, "France", 50, 
  2010, "France", 40, 
  2011, "France", 49, 
  2001, "USA", 55,
  2002, "USA", 53,
  2003, "USA", 64,
  2004, "USA", 40,
  2005, "USA", 30,
  2006, "USA", 39,
  2007, "USA", 55,
  2008, "USA", 53,
  2009, "USA", 71,
  2010, "USA", 44,
  2011, "USA", 40
)

rmod <- df %>% 
  group_by(country) %>% 
  do(fitModels = lm("value ~ year", data = .))

df <- df %>% 
  add_predictions(rmod)
Run Code Online (Sandbox Code Playgroud)

这会引发错误:

Error in UseMethod("predict") : 
  no applicable method for 'predict' applied to an object of class "c('rowwise_df', 'tbl_df', 'tbl', 'data.frame')"
Run Code Online (Sandbox Code Playgroud)

我想要获取一列包含该国家/地区的每个拟合值或一列包含每个国家/地区的预测。不知何故,add_predictions()当模型在调用后保存为列表时,该功能似乎不起作用do()

r2e*_*ans 8

您还可以通过几种其他方法来解决此问题。

\n\n

可能是最直接的,但你会失去中间模型:

\n\n
rmod <- df %>%\n  group_by(country) %>%\n  mutate(fit = lm(value ~ year)$fitted.values) %>%\n  ungroup\nrmod\n# # A tibble: 22 \xc3\x97 4\n#     year country value      fit\n#    <dbl>   <chr> <dbl>    <dbl>\n# 1   2001  France    55 38.13636\n# 2   2002  France    53 39.00000\n# 3   2003  France    31 39.86364\n# 4   2004  France    10 40.72727\n# 5   2005  France    30 41.59091\n# 6   2006  France    37 42.45455\n# 7   2007  France    54 43.31818\n# 8   2008  France    58 44.18182\n# 9   2009  France    50 45.04545\n# 10  2010  France    40 45.90909\n# # ... with 12 more rows\n
Run Code Online (Sandbox Code Playgroud)\n\n

另一种方法使用“整洁”模型将数据、模型和结果封装到框架内的各个单元格中:

\n\n
rmod <- df %>%\n  group_by(country) %>%\n  nest() %>%\n  mutate(mdl = map(data, ~ lm(value ~ year, data=.))) %>%\n  mutate(fit = map(mdl, ~ .$fitted.values))\nrmod\n# # A tibble: 2 \xc3\x97 4\n#   country              data      mdl        fit\n#     <chr>            <list>   <list>     <list>\n# 1  France <tibble [11 \xc3\x97 2]> <S3: lm> <dbl [11]>\n# 2     USA <tibble [11 \xc3\x97 2]> <S3: lm> <dbl [11]>\n
Run Code Online (Sandbox Code Playgroud)\n\n

这种方法的优点是,您可以根据需要访问模型的其他属性,也许summary( filter(rmod, country == "France")$mdl[[1]] )。([[1]]是必需的,因为对于tibbles,$mdl将始终返回 a list。)

\n\n

您可以按如下方式提取/取消嵌套它:

\n\n
select(rmod, -mdl) %>% unnest()\n# # A tibble: 22 \xc3\x97 4\n#    country      fit  year value\n#      <chr>    <dbl> <dbl> <dbl>\n# 1   France 38.13636  2001    55\n# 2   France 39.00000  2002    53\n# 3   France 39.86364  2003    31\n# 4   France 40.72727  2004    10\n# 5   France 41.59091  2005    30\n# 6   France 42.45455  2006    37\n# 7   France 43.31818  2007    54\n# 8   France 44.18182  2008    58\n# 9   France 45.04545  2009    50\n# 10  France 45.90909  2010    40\n# # ... with 12 more rows\n
Run Code Online (Sandbox Code Playgroud)\n\n

(不幸的是,这些列被重新排序,但这很美观并且很容易修复。)

\n\n

编辑

\n\n

如果您想/需要在此处使用modelr-species,请尝试:

\n\n
rmod <- df %>%\n  group_by(country) %>%\n  nest() %>%\n  mutate(mdl = map(data, ~ lm(value ~ year, data=.))) %>%\n  mutate(fit = map(mdl, ~ .$fitted.values)) %>%\n  mutate(data = map2(data, mdl, add_predictions))\nrmod\n# # A tibble: 2 x 4\n#   country data              mdl      fit       \n#   <chr>   <list>            <list>   <list>    \n# 1 France  <tibble [11 x 3]> <S3: lm> <dbl [11]>\n# 2 USA     <tibble [11 x 3]> <S3: lm> <dbl [11]>\nselect(rmod, -mdl, -fit) %>% unnest()\n# # A tibble: 22 x 4\n#    country  year value  pred\n#    <chr>   <dbl> <dbl> <dbl>\n#  1 France  2001.   55.  38.1\n#  2 France  2002.   53.  39.0\n#  3 France  2003.   31.  39.9\n#  4 France  2004.   10.  40.7\n#  5 France  2005.   30.  41.6\n#  6 France  2006.   37.  42.5\n#  7 France  2007.   54.  43.3\n#  8 France  2008.   58.  44.2\n#  9 France  2009.   50.  45.0\n# 10 France  2010.   40.  45.9\n# # ... with 12 more rows\n
Run Code Online (Sandbox Code Playgroud)\n