在 Python 中实现梯度下降并收到溢出错误

use*_*597 3 python artificial-intelligence machine-learning gradient-descent loss-function

梯度下降和溢出错误

我目前正在 python 中实现向量化梯度下降。但是,我仍然收到溢出错误。不过,我的数据集中的数字并不是很大。我正在使用这个公式:

矢量化梯度下降的公式 我选择此实现是为了避免使用衍生工具。有人对如何解决这个问题有任何建议还是我实施错误?先感谢您!

数据集链接:https://www.kaggle.com/CooperUnion/anime-recommendations-database/data

## Cleaning Data ##
import math
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

data = pd.read_csv('anime.csv')
# print(data.corr())
# print(data['members'].isnull().values.any()) # Prints False
# print(data['rating'].isnull().values.any()) # Prints True

members = [] # Corresponding fan club size for row 
ratings = [] # Corresponding rating for row

for row in data.iterrows():
    if not math.isnan(row[1]['rating']): # Checks for Null ratings
        members.append(row[1]['members'])
        ratings.append(row[1]['rating'])


plt.plot(members, ratings)
plt.savefig('scatterplot.png')

theta0 = 0.3 # Random guess
theta1 = 0.3 # Random guess
error = 0
Run Code Online (Sandbox Code Playgroud)

公式的

def hypothesis(x, theta0, theta1):
    return  theta0 + theta1 * x

def costFunction(x, y, theta0, theta1, m):
    loss = 0 
    for i in range(m): # Represents summation
        loss += (hypothesis(x[i], theta0, theta1) - y[i])**2
    loss *= 1 / (2 * m) # Represents 1/2m
    return loss

def gradientDescent(x, y, theta0, theta1, alpha, m, iterations=1500):
    for i in range(iterations):
        gradient0 = 0
        gradient1 = 0
        for j in range(m):
            gradient0 += hypothesis(x[j], theta0, theta1) - y[j]
            gradient1 += (hypothesis(x[j], theta0, theta1) - y[j]) * x[j]
        gradient0 *= 1/m
        gradient1 *= 1/m
        temp0 = theta0 - alpha * gradient0
        temp1 = theta1 - alpha * gradient1
        theta0 = temp0
        theta1 = temp1
        error = costFunction(x, y, theta0, theta1, len(y))
        print("Error is:", error)
    return theta0, theta1

print(gradientDescent(members, ratings, theta0, theta1, 0.01, len(ratings)))
Run Code Online (Sandbox Code Playgroud)

错误的

经过几次迭代后,在gradientDescent函数中调用我的costFunction给出了一个OverflowError:(34,'结果太大')。但是,我希望我的代码能够不断打印出不断减小的错误值。

    Error is: 1.7515692852199285e+23
    Error is: 2.012089675182454e+38
    Error is: 2.3113586742689143e+53
    Error is: 2.6551395730578252e+68
    Error is: 3.05005286756189e+83
    Error is: 3.503703756035943e+98
    Error is: 4.024828599077087e+113
    Error is: 4.623463163528686e+128
    Error is: 5.311135890211131e+143
    Error is: 6.101089907410428e+158
    Error is: 7.008538065634975e+173
    Error is: 8.050955905074458e+188
    Error is: 9.248418197694096e+203
    Error is: 1.0623985545062037e+219
    Error is: 1.220414847696018e+234
    Error is: 1.4019337603196565e+249
    Error is: 1.6104509643047377e+264
    Error is: 1.8499820618048921e+279
    Error is: 2.1251399172389593e+294
    Traceback (most recent call last):
      File "tyreeGradientDescent.py", line 54, in <module>
        print(gradientDescent(members, ratings, theta0, theta1, 0.01, len(ratings)))
      File "tyreeGradientDescent.py", line 50, in gradientDescent
        error = costFunction(x, y, theta0, theta1, len(y))
      File "tyreeGradientDescent.py", line 33, in costFunction
        loss += (hypothesis(x[i], theta0, theta1) - y[i])**2
    OverflowError: (34, 'Result too large')
Run Code Online (Sandbox Code Playgroud)

Mar*_*yer 5

你的数据值确实非常大,这使得你的损失函数非常陡峭。结果是您需要一个很小的​​alpha,除非您将数据标准化为较小的值。当 alpha 值太大时,你的梯度下降会到处跳跃并且实际上发散,这就是为什么你的错误率上升而不是下降。

对于您当前的数据,α0.0000000001将使误差收敛。经过 30 次迭代后,我的损失来自:

Error is: 66634985.91339202

Error is: 16.90452378179708