如何解析句子列表?

vit*_*y87 9 stanford-nlp

我想用Stanford NLP解析器解析句子列表.我的列表是一个ArrayList,如何解析所有列表LexicalizedParser

我想从每个句子得到这种形式:

Tree parse =  (Tree) lp1.apply(sentence);
Run Code Online (Sandbox Code Playgroud)

dem*_*lem 20

虽然可以深入研究文档,但我将在此处提供代码,特别是因为链接移动和/或死亡.这个特定的答案使用整个管道.如果对整个管道不感兴趣,我会在一瞬间提供替代答案.

以下示例是使用斯坦福管道的完整方式.如果对共参考分辨率不感兴趣,请dcoref从第3行代码中删除.因此,在下面的示例中,如果您只是在文本体(文本变量)中提供它,那么管道会为您(ssplit注释器)执行句子分割.只有一句话?嗯,没关系,您可以将其作为文本变量提供.

   // creates a StanfordCoreNLP object, with POS tagging, lemmatization, NER, parsing, and coreference resolution 
    Properties props = new Properties();
    props.put("annotators", "tokenize, ssplit, pos, lemma, ner, parse, dcoref");
    StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

    // read some text in the text variable
    String text = ... // Add your text here!

    // create an empty Annotation just with the given text
    Annotation document = new Annotation(text);

    // run all Annotators on this text
    pipeline.annotate(document);

    // these are all the sentences in this document
    // a CoreMap is essentially a Map that uses class objects as keys and has values with custom types
    List<CoreMap> sentences = document.get(SentencesAnnotation.class);

    for(CoreMap sentence: sentences) {
      // traversing the words in the current sentence
      // a CoreLabel is a CoreMap with additional token-specific methods
      for (CoreLabel token: sentence.get(TokensAnnotation.class)) {
        // this is the text of the token
        String word = token.get(TextAnnotation.class);
        // this is the POS tag of the token
        String pos = token.get(PartOfSpeechAnnotation.class);
        // this is the NER label of the token
        String ne = token.get(NamedEntityTagAnnotation.class);       
      }

      // this is the parse tree of the current sentence
      Tree tree = sentence.get(TreeAnnotation.class);

      // this is the Stanford dependency graph of the current sentence
      SemanticGraph dependencies = sentence.get(CollapsedCCProcessedDependenciesAnnotation.class);
    }

    // This is the coreference link graph
    // Each chain stores a set of mentions that link to each other,
    // along with a method for getting the most representative mention
    // Both sentence and token offsets start at 1!
    Map<Integer, CorefChain> graph = 
      document.get(CorefChainAnnotation.class);
Run Code Online (Sandbox Code Playgroud)


Kha*_*rul 1

实际上,斯坦福 NLP 的文档提供了如何解析句子的示例。

您可以在这里找到文档

  • 另请参阅解析器附带的 ParserDemo 示例。您可以直接对作为句子的字符串调用 apply() 。 (2认同)