如果我有两个参数方程,例如x = 2*t和y = t**2 - 3,我可以将它们区分如下:
>>> x, y, t = symbols('x, y, t')
>>> x = 2*t
>>> y = t**2 - 3
>>> diff(y)/diff(x)
t
Run Code Online (Sandbox Code Playgroud)
要获得二阶导数:
>>> (diff(x,t,1)*diff(y,t,2) - diff(y,t,1)*diff(x,t,2)) / diff(x,t,1)**3
1/2
Run Code Online (Sandbox Code Playgroud)
我可以用同意的方式来计算这个吗?
也许把它包装在一个函数中就是我应该做的事情?
>>> def second_derivative(x,y):
>>> return (diff(x,t,1)*diff(y,t,2) - diff(y,t,1)*diff(x,t,2)) / diff(x,t,1)**3
Run Code Online (Sandbox Code Playgroud)
然后它变成:
>>> second_derivative(2*t, t**2 - 3)
1/2
Run Code Online (Sandbox Code Playgroud)
Chr*_*now -1
我创建了一个自定义函数:
>>> def second_derivative(x,y):
>>> return (diff(x,t,1)*diff(y,t,2) - diff(y,t,1)*diff(x,t,2)) / diff(x,t,1)**3
Run Code Online (Sandbox Code Playgroud)
其名称如下:
>>> second_derivative(2*t, t**2 - 3)
1/2
Run Code Online (Sandbox Code Playgroud)