Har*_*tel 1 python opencv computer-vision feature-tracking video-tracking
我正在使用KLT(Kanade-Lucas-Tomasi Tracking)跟踪算法来跟踪印度的交通运动。我正在正确跟踪交通一侧的流量,但根本没有检测到在帧中移动的另一侧交通。
算法由cv2.goodFeaturesToTrack和cv2.calcOpticalFlowPyrLK实现结果组成。
在图像中,您可以看到红色和银色汽车没有跟踪功能。左侧的黄色自动也不会被跟踪。这有什么原因吗?角落依然存在。
特征参数cv2.goodFeaturesToTrack:
feature_params = dict( maxCorners = 500, # How many pts. to locate
qualityLevel = 0.1, # b/w 0 & 1, min. quality below which everyone is rejected
minDistance = 7, # Min eucledian distance b/w corners detected
blockSize = 3 ) # Size of an average block for computing a derivative covariation matrix over each pixel neighborhood
Run Code Online (Sandbox Code Playgroud)
特征参数cv2.calcOpticalFlowPyrLK:
lk_params = dict( winSize = (15,15), # size of the search window at each pyramid level
maxLevel = 2, # 0, pyramids are not used (single level), if set to 1, two levels are used, and so on
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
Run Code Online (Sandbox Code Playgroud)
我必须使用的视频是 60 分钟。很长,KLT 在 5 分钟后停止跟踪。任何建议或帮助都会很棒。谢谢。
小智 5
基本上你做的一切都是正确的,你只需要重新初始化这样的跟踪优点
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
Run Code Online (Sandbox Code Playgroud)
之后说每第五帧或任何你喜欢的东西希望它有帮助!以下是我的代码:
import cv2
import numpy as np
cap = cv2.VideoCapture('side.avi')
# params for ShiTomasi corner detection
feature_params = dict( maxCorners = 100,
qualityLevel = 0.3,
minDistance = 7,
blockSize = 7 )
# Parameters for lucas kanade optical flow
lk_params = dict( winSize = (15,15),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# Create some random colors
color = np.random.randint(0,255,(100,3))
# Take first frame and find corners in it
ret, old_frame = cap.read()
for i in range(60):
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
print(p0)
# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)
while(1):
ret,frame = cap.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame_no = cap.get(cv2.CAP_PROP_POS_FRAMES)
if int(frame_no)%5 == 0:
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
# calculate optical flow
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# Select good points
good_new = p1[st==1]
good_old = p0[st==1]
# draw the tracks
for i,(new,old) in enumerate(zip(good_new,good_old)):
a,b = new.ravel()
c,d = old.ravel()
mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)
frame = cv2.circle(frame,(a,b),5,color[i].tolist(),-1)
img = cv2.add(frame,mask)
cv2.imshow('frame',img)
k = cv2.waitKey(2000) & 0xff
if k == 27:
break
# Now update the previous frame and previous points
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1,1,2)
cv2.destroyAllWindows()
cap.release()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
8340 次 |
| 最近记录: |