use*_*983 5 rgb alignment yuv opencl
我知道以下公式可用于将RGB图像转换为YUV图像.在下面的公式中,R,G,B,Y,U,V都是8位无符号整数,中间值是16位无符号整数.
Y = ( ( 66 * R + 129 * G + 25 * B + 128) >> 8) + 16
U = ( ( -38 * R - 74 * G + 112 * B + 128) >> 8) + 128
V = ( ( 112 * R - 94 * G - 18 * B + 128) >> 8) + 128
Run Code Online (Sandbox Code Playgroud)
但是当在OpenCL中使用该公式时,这是一个不同的故事.
1. 8位存储器写访问是可选扩展,这意味着一些OpenCL实现可能不支持它.
2.即使支持上述扩展,与32位写访问相比,它的速度也非常慢.
为了获得更好的性能,每4个像素将同时处理,因此输入为12个8位整数,输出为3个32位无符号整数(第一个代表4个Y样本,第二个代表4个Y样本,第二个代表4 U样品,最后一个代表4 V样品).
我的问题是如何直接从12个8位整数中获得这3个32位整数?是否有一个公式来获得这3个32位整数,或者我只需要使用旧公式得到12个8位整数结果(4 Y,4 U,4 V)并用位构造3个32位整数 - 运作?
即使2年前问过这个问题,我认为一些有效的代码会对此有所帮助.就最初关于直接访问8位值时性能不佳的问题而言,最好在可能的情况下执行32位直接访问.
前段时间我开发并使用以下OpenCL内核将ARGB(典型的windows位图像素布局)转换为y平面(全尺寸),u/v半平面(四分之一大小)内存布局作为libx264的输入编码.
__kernel void ARGB2YUV (
__global unsigned int * sourceImage,
__global unsigned int * destImage,
unsigned int srcHeight,
unsigned int srcWidth,
unsigned int yuvStride // must be srcWidth/4 since we pack 4 pixels into 1 Y-unit (with 4 y-pixels)
)
{
int i,j;
unsigned int RGBs [ 4 ];
unsigned int posSrc, RGB, Value4 = 0, Value, yuvStrideHalf, srcHeightHalf, yPlaneOffset, posOffset;
unsigned char red, green, blue;
unsigned int posX = get_global_id(0);
unsigned int posY = get_global_id(1);
if ( posX < yuvStride ) {
// Y plane - pack 4 y's within each work item
if ( posY >= srcHeight )
return;
posSrc = (posY * srcWidth) + (posX * 4);
RGBs [ 0 ] = sourceImage [ posSrc ];
RGBs [ 1 ] = sourceImage [ posSrc + 1 ];
RGBs [ 2 ] = sourceImage [ posSrc + 2 ];
RGBs [ 3 ] = sourceImage [ posSrc + 3 ];
for ( i=0; i<4; i++ ) {
RGB = RGBs [ i ];
blue = RGB & 0xff; green = (RGB >> 8) & 0xff; red = (RGB >> 16) & 0xff;
Value = ( ( 66 * red + 129 * green + 25 * blue ) >> 8 ) + 16;
Value4 |= (Value << (i * 8));
}
destImage [ (posY * yuvStride) + posX ] = Value4;
return;
}
posX -= yuvStride;
yuvStrideHalf = yuvStride >> 1;
// U plane - pack 4 u's within each work item
if ( posX >= yuvStrideHalf )
return;
srcHeightHalf = srcHeight >> 1;
if ( posY < srcHeightHalf ) {
posSrc = ((posY * 2) * srcWidth) + (posX * 8);
RGBs [ 0 ] = sourceImage [ posSrc ];
RGBs [ 1 ] = sourceImage [ posSrc + 2 ];
RGBs [ 2 ] = sourceImage [ posSrc + 4 ];
RGBs [ 3 ] = sourceImage [ posSrc + 6 ];
for ( i=0; i<4; i++ ) {
RGB = RGBs [ i ];
blue = RGB & 0xff; green = (RGB >> 8) & 0xff; red = (RGB >> 16) & 0xff;
Value = ( ( -38 * red + -74 * green + 112 * blue ) >> 8 ) + 128;
Value4 |= (Value << (i * 8));
}
yPlaneOffset = yuvStride * srcHeight;
posOffset = (posY * yuvStrideHalf) + posX;
destImage [ yPlaneOffset + posOffset ] = Value4;
return;
}
posY -= srcHeightHalf;
if ( posY >= srcHeightHalf )
return;
// V plane - pack 4 v's within each work item
posSrc = ((posY * 2) * srcWidth) + (posX * 8);
RGBs [ 0 ] = sourceImage [ posSrc ];
RGBs [ 1 ] = sourceImage [ posSrc + 2 ];
RGBs [ 2 ] = sourceImage [ posSrc + 4 ];
RGBs [ 3 ] = sourceImage [ posSrc + 6 ];
for ( i=0; i<4; i++ ) {
RGB = RGBs [ i ];
blue = RGB & 0xff; green = (RGB >> 8) & 0xff; red = (RGB >> 16) & 0xff;
Value = ( ( 112 * red + -94 * green + -18 * blue ) >> 8 ) + 128;
Value4 |= (Value << (i * 8));
}
yPlaneOffset = yuvStride * srcHeight;
posOffset = (posY * yuvStrideHalf) + posX;
destImage [ yPlaneOffset + (yPlaneOffset >> 2) + posOffset ] = Value4;
return;
}
Run Code Online (Sandbox Code Playgroud)
此代码仅执行全局32位内存访问,而每个工作项中发生8位处理.
哦..以及调用内核的正确代码
unsigned int width = 1024;
unsigned int height = 768;
unsigned int frameSize = width * height;
const unsigned int argbSize = frameSize * 4; // ARGB pixels
const unsigned int yuvSize = frameSize + (frameSize >> 1); // Y,U,V planes
const unsigned int yuvStride = width >> 2; // since we pack 4 RGBs into "one" YYYY
// Allocates ARGB buffer
ocl_rgb_buffer = clCreateBuffer ( context, CL_MEM_READ_WRITE, argbSize, 0, &error );
// ... error handling ...
ocl_yuv_buffer = clCreateBuffer ( context, CL_MEM_READ_WRITE, yuvSize, 0, &error );
// ... error handling ...
error = clSetKernelArg ( kernel, 0, sizeof(cl_mem), &ocl_rgb_buffer );
error |= clSetKernelArg ( kernel, 1, sizeof(cl_mem), &ocl_yuv_buffer );
error |= clSetKernelArg ( kernel, 2, sizeof(unsigned int), &height);
error |= clSetKernelArg ( kernel, 3, sizeof(unsigned int), &width);
error |= clSetKernelArg ( kernel, 4, sizeof(unsigned int), &yuvStride);
// ... error handling ...
const size_t local_ws[] = { 16, 16 };
const size_t global_ws[] = { yuvStride + (yuvStride >> 1), height };
error = clEnqueueNDRangeKernel ( queue, kernel, 2, NULL, global_ws, local_ws, 0, NULL, NULL );
// ... error handling ...
Run Code Online (Sandbox Code Playgroud)
注意:看看工作项计算.需要添加一些额外的代码(例如,使用mod以添加足够的备用项)以确保工作项大小适合本地工作大小.
像这样?除非您的平台可以使用 int3,否则请使用 int4。此外,您还可以将 5 个像素打包到 int16 中,这样您就浪费了 1/16 而不是 1/4 的内存带宽。
__kernel void rgb2yuv( __global int3* input, __global int3* output){
rgb = input[get_global_id(0)];
R = rgb.x;
G = rgb.y;
B = rgb.z;
yuv.x = ( ( 66 * R + 129 * G + 25 * B + 128) >> 8) + 16;
yuv.y = ( ( -38 * R - 74 * G + 112 * B + 128) >> 8) + 128;
yuv.z = ( ( 112 * R - 94 * G - 18 * B + 128) >> 8) + 128;
output[get_global_id(0)] = yuv;
}
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
9105 次 |
| 最近记录: |