Big*_*ata 9 python scikit-learn
看到precision_recall_curve后,如果我想设置阈值=0.4,如何将0.4实现到我的随机森林模型(二元分类)中,对于任何概率<0.4,将其标记为0,对于任何>=0.4,将其标记为1。
from sklearn.ensemble import RandomForestClassifier
random_forest = RandomForestClassifier(n_estimators=100, oob_score=True, random_state=12)
random_forest.fit(X_train, y_train)
from sklearn.metrics import accuracy_score
predicted = random_forest.predict(X_test)
accuracy = accuracy_score(y_test, predicted)
Run Code Online (Sandbox Code Playgroud)
文档精确召回
Ste*_*tev 24
假设您正在进行二元分类,这很容易:
threshold = 0.4
predicted_proba = random_forest.predict_proba(X_test)
predicted = (predicted_proba [:,1] >= threshold).astype('int')
accuracy = accuracy_score(y_test, predicted)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
18065 次 |
| 最近记录: |