Sam*_*Sam 3 python string dataframe python-3.x pandas
如果列表中的任何单词与数据帧字符串列完全匹配,我想创建一个包含 1 或 0 的新列。
list_provided=["mul","the"]
#how my dataframe looks
id text
a simultaneous there the
b simultaneous there
c mul why
Run Code Online (Sandbox Code Playgroud)
预期产出
id text found
a simultaneous there the 1
b simultaneous there 0
c mul why 1
Run Code Online (Sandbox Code Playgroud)
第二行分配为 0,因为“mul”或“the”在字符串列“text”中不完全匹配
到目前为止尝试过代码
#For exact match I am using the below code
data["Found"]=np.where(data["text"].str.contains(r'(?:\s|^)penalidades(?:\s|$)'),1,0)
Run Code Online (Sandbox Code Playgroud)
如何迭代循环以找到所提供的单词列表中所有单词的完全匹配?
编辑: 如果我按照 Georgey 的建议使用 str.contains(pattern),则 data["Found"] 的所有行都会变为 1
data=pd.DataFrame({"id":("a","b","c","d"), "text":("simultaneous there the","simultaneous there","mul why","mul")})
list_of_word=["mul","the"]
pattern = '|'.join(list_of_word)
data["Found"]=np.where(data["text"].str.contains(pattern),1,0)
Output:
id text found
a simultaneous there the 1
b simultaneous there 1
c mul why 1
d mul 1
Run Code Online (Sandbox Code Playgroud)
此处找到的列中的第二行应该为 0
您可以使用pd.Series.apply和sum生成器表达式来执行此操作:
import pandas as pd
df = pd.DataFrame({'id': ['a', 'b', 'c'],
'text': ['simultaneous there the', 'simultaneous there', 'mul why']})
test_set = {'mul', 'the'}
df['found'] = df['text'].apply(lambda x: sum(i in test_set for i in x.split()))
# id text found
# 0 a simultaneous there the 1
# 1 b simultaneous there 0
# 2 c mul why 1
Run Code Online (Sandbox Code Playgroud)
上面提供了一个计数。如果您只需要布尔值,请使用any:
df['found'] = df['text'].apply(lambda x: any(i in test_set for i in x.split()))
Run Code Online (Sandbox Code Playgroud)
对于整数表示,链.astype(int)。