cls*_*udt 5 python machine-learning apache-spark pyspark data-science
在开始使用pyspark.ml管道 API 时,我发现自己为典型的预处理任务编写了自定义转换器,以便在管道中使用它们。例子:
from pyspark.ml import Pipeline, Transformer
class CustomTransformer(Transformer):
# lazy workaround - a transformer needs to have these attributes
_defaultParamMap = dict()
_paramMap = dict()
_params = dict()
class ColumnSelector(CustomTransformer):
"""Transformer that selects a subset of columns
- to be used as pipeline stage"""
def __init__(self, columns):
self.columns = columns
def _transform(self, data):
return data.select(self.columns)
class ColumnRenamer(CustomTransformer):
"""Transformer renames one column"""
def __init__(self, rename):
self.rename = rename
def _transform(self, data):
(colNameBefore, colNameAfter) = self.rename
return data.withColumnRenamed(colNameBefore, colNameAfter)
class NaDropper(CustomTransformer):
"""
Drops rows with at least one not-a-number element
"""
def __init__(self, cols=None):
self.cols = cols
def _transform(self, data):
dataAfterDrop = data.dropna(subset=self.cols)
return dataAfterDrop
class ColumnCaster(CustomTransformer):
def __init__(self, col, toType):
self.col = col
self.toType = toType
def _transform(self, data):
return data.withColumn(self.col, data[self.col].cast(self.toType))
Run Code Online (Sandbox Code Playgroud)
它们可以工作,但我想知道这是一种模式还是反模式——这样的转换器是使用管道 API 的好方法吗?是否有必要实现它们,或者是否在其他地方提供了等效功能?
我想说它主要是基于意见的,尽管它看起来不必要地冗长,而且 PythonTransformers与 API 的其余部分集成得不好Pipeline。
还值得指出的是,您在这里拥有的一切都可以轻松实现SQLTransformer。例如:
from pyspark.ml.feature import SQLTransformer
def column_selector(columns):
return SQLTransformer(
statement="SELECT {} FROM __THIS__".format(", ".join(columns))
)
Run Code Online (Sandbox Code Playgroud)
或者
def na_dropper(columns):
return SQLTransformer(
statement="SELECT * FROM __THIS__ WHERE {}".format(
" AND ".join(["{} IS NOT NULL".format(x) for x in columns])
)
)
Run Code Online (Sandbox Code Playgroud)
只需付出一点努力,您就可以将 SQLAlchemy 与 Hive 方言结合使用,以避免手写 SQL。
| 归档时间: |
|
| 查看次数: |
2095 次 |
| 最近记录: |