在 Python 中根据文本的极性从 Textblob 中获取正负词(情感分析)

Lea*_*ner 5 python machine-learning python-3.x sentiment-analysis textblob

我有一个文本 blob,其中如果极性 > 0,我将文本分类为正,如果 = 0,则为中性,如果 < 0,则为负。我如何根据将其分类为正、负或中性来获得单词?

小智 5

我希望以下代码可以帮助您:

from textblob import TextBlob
from textblob.sentiments import NaiveBayesAnalyzer
import nltk
nltk.download('movie_reviews')
nltk.download('punkt')

text          = "I feel the product is so good" 

sent          = TextBlob(text)
# The polarity score is a float within the range [-1.0, 1.0]
# where negative value indicates negative text and positive
# value indicates that the given text is positive.
polarity      = sent.sentiment.polarity
# The subjectivity is a float within the range [0.0, 1.0] where
# 0.0 is very objective and 1.0 is very subjective.
subjectivity  = sent.sentiment.subjectivity

sent          = TextBlob(text, analyzer = NaiveBayesAnalyzer())
classification= sent.sentiment.classification
positive      = sent.sentiment.p_pos
negative      = sent.sentiment.p_neg

print(polarity,subjectivity,classification,positive,negative)
Run Code Online (Sandbox Code Playgroud)