我有一个熊猫数据框,其值如下
ProcessID1 UserID Date Month Year Time
248 Tony 29 4 2017 23:30:56
436 Jeff 28 4 2017 20:02:19
500 Greg 4 5 2017 11:48:29
我想知道有什么方法可以将Date,Month&Year和time列合并为一种pd.datetime格式?
to_datetime与自动转换列Day,Month,Year一起使用,将add time转换为to_timedelta:
df['Datetime'] = pd.to_datetime(df.rename(columns={'Date':'Day'})['Day','Month','Year']]) + \
pd.to_timedelta(df['Time'])
Run Code Online (Sandbox Code Playgroud)
另一个解决方案是将所有列先转换为strings:
df['Datetime'] = pd.to_datetime(df[['Date','Month','Year', 'Time']]
.astype(str).apply(' '.join, 1), format='%d %m %Y %H:%M:%S')
Run Code Online (Sandbox Code Playgroud)
df['Datetime'] = (pd.to_datetime(df['Year'].astype(str) + '-' +
df['Month'].astype(str) + '-' +
df['Date'].astype(str) + ' ' +
df['Time']))
Run Code Online (Sandbox Code Playgroud)
print (df)
ProcessID1 UserID Date Month Year Time Datetime
0 248 Tony 29 4 2017 23:30:56 2017-04-29 23:30:56
1 436 Jeff 28 4 2017 20:02:19 2017-04-28 20:02:19
2 500 Greg 4 5 2017 11:48:29 2017-05-04 11:48:29
Run Code Online (Sandbox Code Playgroud)
最后,如果需要删除这些列:
df = df.drop(['Date','Month','Year', 'Time'], axis=1)
print (df)
ProcessID1 UserID Datetime
0 248 Tony 2017-04-29 23:30:56
1 436 Jeff 2017-04-28 20:02:19
2 500 Greg 2017-05-04 11:48:29
Run Code Online (Sandbox Code Playgroud)