Pan*_* Li 2 python tensorflow tensorflow-datasets
我想将基于原始队列的数据加载机制更改为tf.dataAPI。
原始代码是:
# Index queue
self.input_idxs = tf.placeholder(tf.int64, shape=[None, 2])
idx_queue = tf.FIFOQueue(1e8, tf.int64)
self.enq_idxs = idx_queue.enqueue_many(self.input_idxs)
get_idx = idx_queue.dequeue()
# Image loading queue
img_queue = tf.FIFOQueue(opt.max_queue_size, task.proc_arg_dtype)
load_data = tf.py_func(task.load_sample_data, [get_idx], task.proc_arg_dtype)
enq_img = img_queue.enqueue(load_data)
init_sample = img_queue.dequeue()
# Preprocessing queue
# (for any preprocessing that can be done with TF operations)
data_queue = tf.FIFOQueue(opt.max_queue_size, task.data_arg_dtype,
shapes=task.data_shape)
enq_data = data_queue.enqueue(task.preprocess(init_sample, train_flag))
self.get_sample = data_queue.dequeue_many(opt.batchsize)
Run Code Online (Sandbox Code Playgroud)
更改后为:
# Dataset
self.input_idxs = tf.placeholder(tf.int64, shape=[None, 2])
dataset = tf.data.Dataset.from_tensor_slices(self.input_idxs)
def load_sample(idx):
sample = task.load_sample_data(idx)
sample = task.preprocess(sample, train_flag)
return sample
dataset = dataset.map(lambda idx: tf.py_func(load_sample, [idx], task.proc_arg_dtype), num_parallel_calls=self.num_threads)
def gen(dataset):
yield dataset.make_one_shot_iterator().get_next()
dataset = tf.data.Dataset.from_generator(gen, tuple(task.proc_arg_dtype), tuple(task.data_shape))
dataset = dataset.batch(opt.batchsize)
self.iterator = dataset.make_initializable_iterator()
self.get_sample = self.iterator.get_next()
Run Code Online (Sandbox Code Playgroud)
其中,task.proc_arg_dtype和task.data_shape分别是:
proc_arg_dtype = [tf.float32, tf.float32, tf.int32, tf.int32, tf.int32, tf.float32, tf.int32, tf.int32, tf.int32]
data_shape = [
[opt.input_res, opt.input_res, 3],
[opt.output_res, opt.output_res, opt.det_inputs],
[2, opt.max_nodes, 2],
[4],
[opt.max_nodes, opt.obj_slots + opt.rel_slots],
[opt.max_nodes, opt.obj_slots, 5],
[opt.max_nodes, opt.rel_slots, 2],
[opt.max_nodes, 7],
[1]
]
Run Code Online (Sandbox Code Playgroud)
因为我发现tf.py_func没有data_shape参数,所以我使用tf.data.Dataset.from_generator来做到这一点。(不确定是否正确,因为我在参加竞赛之前遇到了问题)
问题是以前self.get_sample类似于:
[<tf.Tensor 'IteratorGetNext:0' shape=(8, 512, 512, 3) dtype=float32>, <tf.Tensor 'IteratorGetNext:1' shape=(8, 64, 64, 300) dtype=float32>, <tf.Tensor 'IteratorGetNext:2' shape=(8, 2, 200, 2) dtype=int32>, <tf.Tensor 'IteratorGetNext:3' shape=(8, 4) dtype=int32>, <tf.Tensor 'IteratorGetNext:4' shape=(8, 200, 9) dtype=int32>, <tf.Tensor 'IteratorGetNext:5' shape=(8, 200, 3, 5) dtype=float32>, <tf.Tensor 'IteratorGetNext:6' shape=(8, 200, 6, 2) dtype=int32>, <tf.Tensor 'IteratorGetNext:7' shape=(8, 200, 7) dtype=int32>, <tf.Tensor 'IteratorGetNext:8' shape=(8, 1) dtype=int32>]
Run Code Online (Sandbox Code Playgroud)
批次大小是第一维。然而,通过使用dataset.batch(opt.batch_size)的self.get_sample是
[<tf.Tensor 'IteratorGetNext:0' shape=(?, 512, 512, 3) dtype=float32>, <tf.Tensor 'IteratorGetNext:1' shape=(?, 64, 64, 300) dtype=float32>, <tf.Tensor 'IteratorGetNext:2' shape=(?, 2, 200, 2) dtype=int32>, <tf.Tensor 'IteratorGetNext:3' shape=(?, 4) dtype=int32>, <tf.Tensor 'IteratorGetNext:4' shape=(?, 200, 9) dtype=int32>, <tf.Tensor 'IteratorGetNext:5' shape=(?, 200, 3, 5) dtype=float32>, <tf.Tensor 'IteratorGetNext:6' shape=(?, 200, 6, 2) dtype=int32>, <tf.Tensor 'IteratorGetNext:7' shape=(?, 200, 7) dtype=int32>, <tf.Tensor 'IteratorGetNext:8' shape=(?, 1) dtype=int32>]
Run Code Online (Sandbox Code Playgroud)
其中未显示实际批次大小。
当前,要在批处理张量上获得完全定义的静态形状,您需要明确告知TensorFlow如果批处理大小未均匀地划分元素总数,则“丢弃”任何“余数”。为此,请替换以下行:
dataset = dataset.batch(opt.batchsize)
Run Code Online (Sandbox Code Playgroud)
...适用于tf.contrib.data.batch_and_drop_remainder():
dataset = dataset.apply(tf.contrib.data.batch_and_drop_remainder(opt.batchsize))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2264 次 |
| 最近记录: |