我试图在黄土适合使用扩充,但我收到以下错误:
Error in data.frame(..., check.names = FALSE) :
arguments imply differing number of rows: 32, 11
Run Code Online (Sandbox Code Playgroud)
在错误消息中,11恰好等于一个段中的观察数,32是观察总数.代码如下.
require(broom)
require(dplyr)
# This example uses the lm method and it works
regressions <- mtcars %>% group_by(cyl) %>% do(fit = lm(wt ~ mpg, .))
regressions %>% augment(fit)
# This example uses the loess method and it generates the error
regressions2 <- mtcars %>% group_by(cyl) %>% do(fit = loess(wt ~ mpg, .))
regressions2 %>% augment(fit)
# The below code appropriately plots the loess fit using geom_smooth.
# My current # workaround is to do a global definition as an aes object in geom_smooth`
cylc = unique(mtcars$cyl) %>% sort()
for (i in 1:length(cyl)){
print(i)
print(cyl[i])
p<- ggplot(data=filter(mtcars,cyl==cylc[i]),aes(x=mpg,y=wt)) + geom_point() + geom_smooth(method="loess") + ggtitle(str_c("cyl = ",cyl[i]))
print(p)
}
Run Code Online (Sandbox Code Playgroud)
这似乎是与do()运算符相关的问题:当我们检查model.frame()其中一个LOESS模型对象时,我们返回所有32行而不是与该模型对应的子集.
解决方法是保留数据而不仅仅是模型,并将其作为第二个参数传递给augment():
regressions2 <- mtcars %>%
group_by(cyl) %>%
do(fit = loess(wt ~ mpg, .),
data = (.)) %>%
augment(fit, data)
Run Code Online (Sandbox Code Playgroud)
augment()无论如何,这通常是推荐的,因为model.frame()没有获得所有原始列.
顺便说一下,我是扫帚的维护者,我一般不再推荐这种do()方法(因为dplyr大部分都在远离它).
相反,我建议使用tidyr nest()和purrr map(),如R4DS的本章所述.这使得保持数据和合并更容易一些augment().
library(tidyr)
library(purrr)
mtcars %>%
nest(-cyl) %>%
mutate(fit = map(data, ~ loess(wt ~ mpg, .))) %>%
unnest(map2(fit, data, augment))
Run Code Online (Sandbox Code Playgroud)