Cha*_*uki 0 scala apache-spark apache-spark-sql spark-dataframe
我有这样的数据帧
df.show(5)
kv |list1 |list2 |p
[k1,v2|[1,2,5,9 |[5,1,7,9,6,3,1,4,9] |0.5
[k1,v3|[1,2,5,8,9|[5,1,7,9,6,3,1,4,15] |0.9
[k2,v2|[77,2,5,9]|[0,1,8,9,7,3,1,4,100]|0.01
[k5,v5|[1,0,5,9 |[5,1,7,9,6,3,1,4,3] |0.3
[k9,v2|[1,2,5,9 |[5,1,7,9,6,3,1,4,200]|2.5
df.count()
5200158
Run Code Online (Sandbox Code Playgroud)
我想获得最大p的行,这对我来说很有用,但我不知道是否有另一种清洁方式
val f = df.select(max(struct(
col("pp") +: df.columns.collect { case x if x != "p" => col(x) }: _*
))).first()
Run Code Online (Sandbox Code Playgroud)
小智 6
只需按顺序排序:
import org.apache.spark.sql.functions.desc
df.orderBy(desc("pp")).take(1)
Run Code Online (Sandbox Code Playgroud)
要么
df.orderBy(desc("pp")).limit(1).first
Run Code Online (Sandbox Code Playgroud)