Ann*_*eso 4 apache-spark pyspark spark-dataframe
我有这个spark DataFrame:
+---+-----+------+----+------------+------------+
| ID| ID2|Number|Name|Opening_Hour|Closing_Hour|
+---+-----+------+----+------------+------------+
|ALT| QWA| 6|null| 08:59:00| 23:30:00|
|ALT|AUTRE| 2|null| 08:58:00| 23:29:00|
|TDR| QWA| 3|null| 08:57:00| 23:28:00|
|ALT| TEST| 4|null| 08:56:00| 23:27:00|
|ALT| QWA| 6|null| 08:55:00| 23:26:00|
|ALT| QWA| 2|null| 08:54:00| 23:25:00|
|ALT| QWA| 2|null| 08:53:00| 23:24:00|
+---+-----+------+----+------------+------------+
Run Code Online (Sandbox Code Playgroud)
我想得到一个新的数据帧,只有3个字段不是唯一的行"ID","ID2"和"Number".
这意味着我想要这个DataFrame:
+---+-----+------+----+------------+------------+
| ID| ID2|Number|Name|Opening_Hour|Closing_Hour|
+---+-----+------+----+------------+------------+
|ALT| QWA| 6|null| 08:59:00| 23:30:00|
|ALT| QWA| 2|null| 08:53:00| 23:24:00|
+---+-----+------+----+------------+------------+
Run Code Online (Sandbox Code Playgroud)
或者可能是包含所有重复项的数据框:
+---+-----+------+----+------------+------------+
| ID| ID2|Number|Name|Opening_Hour|Closing_Hour|
+---+-----+------+----+------------+------------+
|ALT| QWA| 6|null| 08:59:00| 23:30:00|
|ALT| QWA| 6|null| 08:55:00| 23:26:00|
|ALT| QWA| 2|null| 08:54:00| 23:25:00|
|ALT| QWA| 2|null| 08:53:00| 23:24:00|
+---+-----+------+----+------------+------------+
Run Code Online (Sandbox Code Playgroud)
pau*_*ult 12
一种方法是使用a pyspark.sql.Window来添加一列来计算每行("ID", "ID2", "Name")组合的重复数.然后仅选择重复次数大于1的行.
import pyspark.sql.functions as f
from pyspark.sql import Window
w = Window.partitionBy('ID', 'ID2', 'Number')
df.select('*', f.count('ID').over(w).alias('dupeCount'))\
.where('dupeCount > 1')\
.drop('dupeCount')\
.show()
#+---+---+------+----+------------+------------+
#| ID|ID2|Number|Name|Opening_Hour|Closing_Hour|
#+---+---+------+----+------------+------------+
#|ALT|QWA| 2|null| 08:54:00| 23:25:00|
#|ALT|QWA| 2|null| 08:53:00| 23:24:00|
#|ALT|QWA| 6|null| 08:59:00| 23:30:00|
#|ALT|QWA| 6|null| 08:55:00| 23:26:00|
#+---+---+------+----+------------+------------+
Run Code Online (Sandbox Code Playgroud)
我曾经pyspark.sql.functions.count()计算过每组中的项目数.这将返回一个包含所有重复项的DataFrame(您显示的第二个输出).
如果您希望每个("ID", "ID2", "Name")组合只获得一行,则可以使用另一个窗口来排序行.
例如,下面我添加了另一列,row_number并且只选择重复计数大于1且行号等于1的行.这样可以保证每个分组一行.
w2 = Window.partitionBy('ID', 'ID2', 'Number').orderBy('ID', 'ID2', 'Number')
df.select(
'*',
f.count('ID').over(w).alias('dupeCount'),
f.row_number().over(w2).alias('rowNum')
)\
.where('(dupeCount > 1) AND (rowNum = 1)')\
.drop('dupeCount', 'rowNum')\
.show()
#+---+---+------+----+------------+------------+
#| ID|ID2|Number|Name|Opening_Hour|Closing_Hour|
#+---+---+------+----+------------+------------+
#|ALT|QWA| 2|null| 08:54:00| 23:25:00|
#|ALT|QWA| 6|null| 08:59:00| 23:30:00|
#+---+---+------+----+------------+------------+
Run Code Online (Sandbox Code Playgroud)
Mar*_*man 12
这是一种无需 Window 即可完成的方法。
具有重复项的 DataFrame
df.exceptAll(df.drop_duplicates(['ID', 'ID2', 'Number'])).show()
# +---+---+------+------------+------------+
# | ID|ID2|Number|Opening_Hour|Closing_Hour|
# +---+---+------+------------+------------+
# |ALT|QWA| 2| 08:53:00| 23:24:00|
# |ALT|QWA| 6| 08:55:00| 23:26:00|
# +---+---+------+------------+------------+
Run Code Online (Sandbox Code Playgroud)
包含所有重复项的 DataFrame(使用 left_anti join)
df.join(df.groupBy('ID', 'ID2', 'Number')\
.count().where('count = 1').drop('count'),
on=['ID', 'ID2', 'Number'],
how='left_anti').show()
# +---+---+------+------------+------------+
# | ID|ID2|Number|Opening_Hour|Closing_Hour|
# +---+---+------+------------+------------+
# |ALT|QWA| 2| 08:54:00| 23:25:00|
# |ALT|QWA| 2| 08:53:00| 23:24:00|
# |ALT|QWA| 6| 08:59:00| 23:30:00|
# |ALT|QWA| 6| 08:55:00| 23:26:00|
# +---+---+------+------------+------------+
Run Code Online (Sandbox Code Playgroud)
为了扩展 pault非常好的答案:我经常需要将数据帧子集化为仅重复 x 次的条目,并且由于我需要经常这样做,因此我将其转换为一个函数,我只是将其与许多其他辅助函数一起导入在我的脚本开头:
import pyspark.sql.functions as f
from pyspark.sql import Window
def get_entries_with_frequency(df, cols, num):
if type(cols)==str:
cols = [cols]
w = Window.partitionBy(cols)
return df.select('*', f.count(cols[0]).over(w).alias('dupeCount'))\
.where("dupeCount = {}".format(num))\
.drop('dupeCount')
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2170 次 |
| 最近记录: |