Ann*_*nna 4 regex pattern-matching pyspark callable-object
嗨,我有 2 列的数据框:
+----------------------------------------+----------+
| Text | Key_word |
+----------------------------------------+----------+
| First random text tree cheese cat | tree |
| Second random text apple pie three | text |
| Third random text burger food brain | brain |
| Fourth random text nothing thing chips | random |
+----------------------------------------+----------+
Run Code Online (Sandbox Code Playgroud)
我想生成第 3 列,其中一个单词出现在文本中的 key_word 之前。
+----------------------------------------+----------+-------------------+--+
| Text | Key_word | word_bef_key_word | |
+----------------------------------------+----------+-------------------+--+
| First random text tree cheese cat | tree | text | |
| Second random text apple pie three | text | random | |
| Third random text burger food brain | brain | food | |
| Fourth random text nothing thing chips | random | Fourth | |
+----------------------------------------+----------+-------------------+--+
Run Code Online (Sandbox Code Playgroud)
我试过这个,但它不起作用
df2=df1.withColumn('word_bef_key_word',regexp_extract(df1.Text,('\\w+)'df1.key_word,1))
Run Code Online (Sandbox Code Playgroud)
这是创建数据框示例的代码
df = sqlCtx.createDataFrame(
[
('First random text tree cheese cat' , 'tree'),
('Second random text apple pie three', 'text'),
('Third random text burger food brain' , 'brain'),
('Fourth random text nothing thing chips', 'random')
],
('Text', 'Key_word')
)
Run Code Online (Sandbox Code Playgroud)
更新
您也可以在没有 audf的情况下执行此操作,方法是使用pyspark.sql.functions.expr将列值作为参数传递给pyspark.sql.functions.regexp_extract:
from pyspark.sql.functions import expr
df = df.withColumn(
'word_bef_key_word',
expr(r"regexp_extract(Text, concat('\\w+(?= ', Key_word, ')'), 0)")
)
df.show(truncate=False)
#+--------------------------------------+--------+-----------------+
#|Text |Key_word|word_bef_key_word|
#+--------------------------------------+--------+-----------------+
#|First random text tree cheese cat |tree |text |
#|Second random text apple pie three |text |random |
#|Third random text burger food brain |brain |food |
#|Fourth random text nothing thing chips|random |Fourth |
#+--------------------------------------+--------+-----------------+
Run Code Online (Sandbox Code Playgroud)
原答案
一种方法是使用 audf来执行正则表达式:
import re
from pyspark.sql.functions import udf
def get_previous_word(text, key_word):
matches = re.findall(r'\w+(?= {kw})'.format(kw=key_word), text)
return matches[0] if matches else None
get_previous_word_udf = udf(
lambda text, key_word: get_previous_word(text, key_word),
StringType()
)
df = df.withColumn('word_bef_key_word', get_previous_word_udf('Text', 'Key_word'))
df.show(truncate=False)
#+--------------------------------------+--------+-----------------+
#|Text |Key_word|word_bef_key_word|
#+--------------------------------------+--------+-----------------+
#|First random text tree cheese cat |tree |text |
#|Second random text apple pie three |text |random |
#|Third random text burger food brain |brain |food |
#|Fourth random text nothing thing chips|random |Fourth |
#+--------------------------------------+--------+-----------------+
Run Code Online (Sandbox Code Playgroud)
正则表达式模式'\w+(?= {kw})'.format(kw=key_word)意味着匹配一个单词后跟一个空格和key_word. 如果有多个匹配项,我们将返回第一个匹配项。如果没有匹配项,则函数返回None。