我有一个训练有素的Keras模型,我想要:
1)用相同但无偏差的Con2D层替换。
2)在首次激活之前添加BatchNormalization层
我怎样才能做到这一点?
def keras_simple_model():
from keras.models import Model
from keras.layers import Input, Dense, GlobalAveragePooling2D
from keras.layers import Conv2D, MaxPooling2D, Activation
inputs1 = Input((28, 28, 1))
x = Conv2D(4, (3, 3), activation=None, padding='same', name='conv1')(inputs1)
x = Activation('relu')(x)
x = Conv2D(4, (3, 3), activation=None, padding='same', name='conv2')(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool1')(x)
x = Conv2D(8, (3, 3), activation=None, padding='same', name='conv3')(x)
x = Activation('relu')(x)
x = Conv2D(8, (3, 3), activation=None, padding='same', name='conv4')(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool2')(x)
x = GlobalAveragePooling2D()(x)
x = Dense(10, activation=None)(x)
x = Activation('softmax')(x)
model = Model(inputs=inputs1, outputs=x)
return model
if __name__ == '__main__':
model = keras_simple_model()
print(model.summary())
Run Code Online (Sandbox Code Playgroud)
ale*_*xhg 14
以下功能允许您在名称与正则表达式匹配的原始模型中的每一层之前,之后或替换新层,包括非顺序模型,例如DenseNet或ResNet。
import re
from keras.models import Model
def insert_layer_nonseq(model, layer_regex, insert_layer_factory,
insert_layer_name=None, position='after'):
# Auxiliary dictionary to describe the network graph
network_dict = {'input_layers_of': {}, 'new_output_tensor_of': {}}
# Set the input layers of each layer
for layer in model.layers:
for node in layer.outbound_nodes:
layer_name = node.outbound_layer.name
if layer_name not in network_dict['input_layers_of']:
network_dict['input_layers_of'].update(
{layer_name: [layer.name]})
else:
network_dict['input_layers_of'][layer_name].append(layer.name)
# Set the output tensor of the input layer
network_dict['new_output_tensor_of'].update(
{model.layers[0].name: model.input})
# Iterate over all layers after the input
for layer in model.layers[1:]:
# Determine input tensors
layer_input = [network_dict['new_output_tensor_of'][layer_aux]
for layer_aux in network_dict['input_layers_of'][layer.name]]
if len(layer_input) == 1:
layer_input = layer_input[0]
# Insert layer if name matches the regular expression
if re.match(layer_regex, layer.name):
if position == 'replace':
x = layer_input
elif position == 'after':
x = layer(layer_input)
elif position == 'before':
pass
else:
raise ValueError('position must be: before, after or replace')
new_layer = insert_layer_factory()
if insert_layer_name:
new_layer.name = insert_layer_name
else:
new_layer.name = '{}_{}'.format(layer.name,
new_layer.name)
x = new_layer(x)
print('Layer {} inserted after layer {}'.format(new_layer.name,
layer.name))
if position == 'before':
x = layer(x)
else:
x = layer(layer_input)
# Set new output tensor (the original one, or the one of the inserted
# layer)
network_dict['new_output_tensor_of'].update({layer.name: x})
return Model(inputs=model.inputs, outputs=x)
Run Code Online (Sandbox Code Playgroud)
与单纯的顺序模型的简单情况相比,不同之处在于,在遍历各层以查找关键层之前,您首先要分析图形并将每层的输入层存储在辅助字典中。然后,当您遍历各层时,还将存储每层的新输出张量,该张量用于在构建新模型时确定各层的输入层。
以下是一个用例,其中在ResNet50的每个激活层之后插入一个Dropout层:
from keras.applications.resnet50 import ResNet50
model = ResNet50()
def dropout_layer_factory():
return Dropout(rate=0.2, name='dropout')
model = insert_layer_nonseq(model, '.*activation.*, dropout_layer_factory)
model.summary()
Run Code Online (Sandbox Code Playgroud)
ZFT*_*rbo 12
您可以使用以下功能:
def replace_intermediate_layer_in_keras(model, layer_id, new_layer):
from keras.models import Model
layers = [l for l in model.layers]
x = layers[0].output
for i in range(1, len(layers)):
if i == layer_id:
x = new_layer(x)
else:
x = layers[i](x)
new_model = Model(input=layers[0].input, output=x)
return new_model
def insert_intermediate_layer_in_keras(model, layer_id, new_layer):
from keras.models import Model
layers = [l for l in model.layers]
x = layers[0].output
for i in range(1, len(layers)):
if i == layer_id:
x = new_layer(x)
x = layers[i](x)
new_model = Model(input=layers[0].input, output=x)
return new_model
Run Code Online (Sandbox Code Playgroud)
范例:
if __name__ == '__main__':
from keras.layers import Conv2D, BatchNormalization
model = keras_simple_model()
print(model.summary())
model = replace_intermediate_layer_in_keras(model, 3, Conv2D(4, (3, 3), activation=None, padding='same', name='conv2_repl', use_bias=False))
print(model.summary())
model = insert_intermediate_layer_in_keras(model, 4, BatchNormalization())
print(model.summary())
Run Code Online (Sandbox Code Playgroud)
由于图层形状等原因,替换上有一些限制。