bug*_*net 11 math floating-point perl division modulo
在Perl中,%运算符似乎采用整数.例如:
sub foo {
my $n1 = shift;
my $n2 = shift;
print "perl's mod=" . $n1 % $n2, "\n";
my $res = $n1 / $n2;
my $t = int($res);
print "my div=$t", "\n";
$res = $res - $t;
$res = $res * $n2;
print "my mod=" . $res . "\n\n";
}
foo( 3044.952963, 7.1 );
foo( 3044.952963, -7.1 );
foo( -3044.952963, 7.1 );
foo( -3044.952963, -7.1 );
Run Code Online (Sandbox Code Playgroud)
给
perl's mod=6
my div=428
my mod=6.15296300000033
perl's mod=-1
my div=-428
my mod=6.15296300000033
perl's mod=1
my div=-428
my mod=-6.15296300000033
perl's mod=-6
my div=428
my mod=-6.15296300000033
Run Code Online (Sandbox Code Playgroud)
现在,你可以看到,我想出了一个"解决方案"已经计算div和mod.但是,我不明白的是每个论点的符号应该对结果产生什么影响.不是div总是积极的,是n2适合的次数n1?算术在这种情况下应该如何工作?
yst*_*sth 15
标题问一个问题,另一个问题.要回答标题问题,就像在C中一样,%运算符是一个整数模数,但是有一个库例程"fmod",它是一个浮点模数.
use POSIX "fmod";
sub foo {
my $n1 = shift;
my $n2 = shift;
print "perl's fmod=" . fmod($n1,$n2), "\n";
my $res = $n1 / $n2;
my $t = int($res);
print "my div=$t", "\n";
$res = $res - $t;
$res = $res * $n2;
print "my mod=" . $res . "\n\n";
}
foo( 3044.952963, 7.1 );
foo( 3044.952963, -7.1 );
foo( -3044.952963, 7.1 );
foo( -3044.952963, -7.1 );
Run Code Online (Sandbox Code Playgroud)
给
perl's fmod=6.15296300000033
my div=428
my mod=6.15296300000033
perl's fmod=6.15296300000033
my div=-428
my mod=6.15296300000033
perl's fmod=-6.15296300000033
my div=-428
my mod=-6.15296300000033
perl's fmod=-6.15296300000033
my div=428
my mod=-6.15296300000033
Run Code Online (Sandbox Code Playgroud)
给定a = qd + r,在计算负值的余数时存在模糊性d.
例如:
表达式?42 ÷ ?5可以表示为:
?42 = 9×(?5) + 3或?42 = 8×(?5) + (?2).
所以剩下的就是3或-2.
欲了解更多信息:维基百科:剩余"余下的不平等"
此外,mod/div中负数的情况下的输出是依赖于软件语言的实现.请参阅维基百科:Modulo操作(请查看右表)