use*_*940 26 python csv pandas google-cloud-storage google-cloud-platform
我正在尝试将Google Cloud Storage存储桶中的csv文件读取到熊猫数据框中.
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from io import BytesIO
from google.cloud import storage
storage_client = storage.Client()
bucket = storage_client.get_bucket('createbucket123')
blob = bucket.blob('my.csv')
path = "gs://createbucket123/my.csv"
df = pd.read_csv(path)
Run Code Online (Sandbox Code Playgroud)
它显示以下错误消息:
FileNotFoundError: File b'gs://createbucket123/my.csv' does not exist
Run Code Online (Sandbox Code Playgroud)
我做错了什么,我找不到任何不涉及谷歌datalab的解决方案?
Luk*_*ski 51
截至0.24版本的pandas,read_csv支持直接从Google云端存储中读取.只需提供链接到这样的桶:
df = pd.read_csv('gs://bucket/your_path.csv')
Run Code Online (Sandbox Code Playgroud)
为了完整起见,我还留下了其他三个选项.
我将在下面介绍它们.
我已经写了一些便利功能来从Google存储中读取.为了使其更具可读性,我添加了类型注释.如果你碰巧在Python 2上,只需删除它们,代码将完全相同.
假设您获得授权,它在公共和私人数据集上同样有效.在此方法中,您无需先将数据下载到本地驱动器.
如何使用它:
fileobj = get_byte_fileobj('my-project', 'my-bucket', 'my-path')
df = pd.read_csv(fileobj)
Run Code Online (Sandbox Code Playgroud)
代码:
from io import BytesIO, StringIO
from google.cloud import storage
from google.oauth2 import service_account
def get_byte_fileobj(project: str,
bucket: str,
path: str,
service_account_credentials_path: str = None) -> BytesIO:
"""
Retrieve data from a given blob on Google Storage and pass it as a file object.
:param path: path within the bucket
:param project: name of the project
:param bucket_name: name of the bucket
:param service_account_credentials_path: path to credentials.
TIP: can be stored as env variable, e.g. os.getenv('GOOGLE_APPLICATION_CREDENTIALS_DSPLATFORM')
:return: file object (BytesIO)
"""
blob = _get_blob(bucket, path, project, service_account_credentials_path)
byte_stream = BytesIO()
blob.download_to_file(byte_stream)
byte_stream.seek(0)
return byte_stream
def get_bytestring(project: str,
bucket: str,
path: str,
service_account_credentials_path: str = None) -> bytes:
"""
Retrieve data from a given blob on Google Storage and pass it as a byte-string.
:param path: path within the bucket
:param project: name of the project
:param bucket_name: name of the bucket
:param service_account_credentials_path: path to credentials.
TIP: can be stored as env variable, e.g. os.getenv('GOOGLE_APPLICATION_CREDENTIALS_DSPLATFORM')
:return: byte-string (needs to be decoded)
"""
blob = _get_blob(bucket, path, project, service_account_credentials_path)
s = blob.download_as_string()
return s
def _get_blob(bucket_name, path, project, service_account_credentials_path):
credentials = service_account.Credentials.from_service_account_file(
service_account_credentials_path) if service_account_credentials_path else None
storage_client = storage.Client(project=project, credentials=credentials)
bucket = storage_client.get_bucket(bucket_name)
blob = bucket.blob(path)
return blob
Run Code Online (Sandbox Code Playgroud)
gcsfs是"用于Google云端存储的Pythonic文件系统".
如何使用它:
import pandas as pd
import gcsfs
fs = gcsfs.GCSFileSystem(project='my-project')
with fs.open('bucket/path.csv') as f:
df = pd.read_csv(f)
Run Code Online (Sandbox Code Playgroud)
Dask "为分析提供高级并行性,为您喜爱的工具提供大规模性能".当您需要在Python中处理大量数据时,它非常棒.Dask尝试模仿大部分pandasAPI,使其易于用于新手.
这是read_csv
如何使用它:
import dask.dataframe as dd
df = dd.read_csv('gs://bucket/data.csv')
df2 = dd.read_csv('gs://bucket/path/*.csv') # nice!
# df is now Dask dataframe, ready for distributed processing
# If you want to have the pandas version, simply:
df_pd = df.compute()
Run Code Online (Sandbox Code Playgroud)
Lak*_*Lak 16
另一个选择是使用TensorFlow,它能够从Google云端存储执行流式读取:
from tensorflow.python.lib.io import file_io
with file_io.FileIO('gs://bucket/file.csv', 'r') as f:
df = pd.read_csv(f)
Run Code Online (Sandbox Code Playgroud)
使用tensorflow还可以方便地处理文件名中的通配符.例如:
以下代码将读取与特定模式匹配的所有CSV(例如:gs:// bucket/some/dir/train-*)到Pandas数据帧中:
import tensorflow as tf
from tensorflow.python.lib.io import file_io
import pandas as pd
def read_csv_file(filename):
with file_io.FileIO(filename, 'r') as f:
df = pd.read_csv(f, header=None, names=['col1', 'col2'])
return df
def read_csv_files(filename_pattern):
filenames = tf.gfile.Glob(filename_pattern)
dataframes = [read_csv_file(filename) for filename in filenames]
return pd.concat(dataframes)
Run Code Online (Sandbox Code Playgroud)
DATADIR='gs://my-bucket/some/dir'
traindf = read_csv_files(os.path.join(DATADIR, 'train-*'))
evaldf = read_csv_files(os.path.join(DATADIR, 'eval-*'))
Run Code Online (Sandbox Code Playgroud)
从 Pandas 1.2 开始,将文件从谷歌存储加载到 DataFrame 中非常容易。
如果您在本地计算机上工作,它看起来像这样:
df = pd.read_csv('gcs://your-bucket/path/data.csv.gz',
storage_options={"token": "credentials.json"})
Run Code Online (Sandbox Code Playgroud)
您将来自 google 的凭据.json 文件添加为令牌,并将其导入。
如果您在谷歌云上工作,请执行以下操作:
df = pd.read_csv('gcs://your-bucket/path/data.csv.gz',
storage_options={"token": "cloud"})
Run Code Online (Sandbox Code Playgroud)
由于pandas==0.24.0这一点,如果你已经是原生支持gcsfs安装:https://github.com/pandas-dev/pandas/pull/22704。
在正式发布之前,您可以使用pip install pandas==0.24.0rc1.
我正在看这个问题,不想经历安装另一个库的麻烦gcsfs,这在文档中确实是这样说的,This software is beta, use at your own risk......但我找到了一个很好的解决方法,我想在这里发布以防万一这对其他人很有帮助,只需使用 google.cloud 存储库和一些本机 python 库。这是函数:
import pandas as pd
from google.cloud import storage
import os
import io
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'path/to/creds.json'
def gcp_csv_to_df(bucket_name, source_file_name):
storage_client = storage.Client()
bucket = storage_client.bucket(bucket_name)
blob = bucket.blob(source_blob_name)
data = blob.download_as_string()
df = pd.read_csv(io.BytesIO(data))
print(f'Pulled down file from bucket {bucket_name}, file name: {source_file_name}')
return df
Run Code Online (Sandbox Code Playgroud)
此外,虽然它超出了这个问题的范围,但如果您想使用类似的函数将 Pandas 数据帧上传到 GCP,这里是执行此操作的代码:
def df_to_gcp_csv(df, dest_bucket_name, dest_file_name):
storage_client = storage.Client()
bucket = storage_client.bucket(dest_bucket_name)
blob = bucket.blob(dest_file_name)
blob.upload_from_string(df.to_csv(), 'text/csv')
print(f'DataFrame uploaded to bucket {dest_bucket_name}, file name: {dest_file_name}')
Run Code Online (Sandbox Code Playgroud)
希望这是有帮助的!我知道我肯定会使用这些功能。
使用pandas和google-cloud-storage python 包:
首先,我们将文件上传到存储桶以获得完整的工作示例:
import pandas as pd
from sklearn.datasets import load_iris
dataset = load_iris()
data_df = pd.DataFrame(
dataset.data,
columns=dataset.feature_names)
data_df.head()
Run Code Online (Sandbox Code Playgroud)
Out[1]:
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
0 5.1 3.5 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 1.3 0.2
3 4.6 3.1 1.5 0.2
4 5.0 3.6 1.4 0.2
Run Code Online (Sandbox Code Playgroud)
将 csv 文件上传到存储桶(需要设置 GCP 凭据,请在此处阅读更多信息):
from io import StringIO
from google.cloud import storage
bucket_name = 'my-bucket-name' # Replace it with your own bucket name.
data_path = 'somepath/data.csv'
# Get Google Cloud client
client = storage.Client()
# Get bucket object
bucket = client.get_bucket(bucket_name)
# Get blob object (this is pointing to the data_path)
data_blob = bucket.blob(data_path)
# Upload a csv to google cloud storage
data_blob.upload_from_string(
data_df.to_csv(), 'text/csv')
Run Code Online (Sandbox Code Playgroud)
现在我们在存储桶上有一个 csv,可以pd.read_csv通过传递文件内容来使用。
# Read from bucket
data_str = data_blob.download_as_text()
# Instanciate dataframe
data_dowloaded_df = pd.read_csv(StringIO(data_str))
data_dowloaded_df.head()
Run Code Online (Sandbox Code Playgroud)
Out[2]:
Unnamed: 0 sepal length (cm) ... petal length (cm) petal width (cm)
0 0 5.1 ... 1.4 0.2
1 1 4.9 ... 1.4 0.2
2 2 4.7 ... 1.3 0.2
3 3 4.6 ... 1.5 0.2
4 4 5.0 ... 1.4 0.2
[5 rows x 5 columns]
Run Code Online (Sandbox Code Playgroud)
将此方法与pd.read_csv('gs://my-bucket/file.csv')其他方法进行比较时,我发现此处描述的方法更加明确,即client = storage.Client()负责身份验证的方法(在使用多个凭据时这可能非常方便)。此外,storage.Client如果您在 Google Cloud Platform 的资源上运行此代码,则已经完全安装,此时pd.read_csv('gs://my-bucket/file.csv')您需要安装gcsfs允许 pandas 访问 Google Storage 的软件包。
| 归档时间: |
|
| 查看次数: |
20185 次 |
| 最近记录: |