Jam*_*ame 4 opencv image-processing python-3.x scikit-image
我有细胞的二值图像。我想使用 python 来单独分离这些单元格。每个单元格将保存在图像中。例如,我有 1000 个单元格,那么输出将是 1000 个图像,每个图像包含 1 个单元格。目前我使用两种方式获取但是输出都是错误的
from skimage.morphology import watershed
from skimage.feature import peak_local_max
from skimage import morphology
import numpy as np
import cv2
from scipy import ndimage
from skimage import segmentation
image=cv2.imread('/home/toanhoi/Downloads/nuclei/9261_500_f00020_mask.png',0)
image=image[300:600,600:900]
# First way: peak_local_max
distance = ndimage.distance_transform_edt(image)
local_maxi = peak_local_max(distance, indices=False, footprint=np.ones((3, 3)), labels=image)
markers = morphology.label(local_maxi)
labels_ws = watershed(-distance, markers, mask=image)
markers[~image] = -1
labels_rw = segmentation.random_walker(image, markers)
cv2.imshow('watershed',labels_rw)
cv2.waitKey(5000)
# Second way way: using contour
_,contours,heirarchy=cv2.findContours(image,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(image,contours,-1,(125,125,0),1)
cv2.imshow('contours',image)
cv2.waitKey(5000)
Run Code Online (Sandbox Code Playgroud)
scikit-image morphology's label()
通过在二值图像中查找连通分量,可以对函数执行相同的操作。但发现的细胞数量为 421 个。Morphologial
诸如此类的操作erosion / dilation / closing / opening
也可用于预处理输入图像并获得所需的输出。
from skimage import morphology as morph
from skimage.io import imread, imsave
from skimage.color import rgb2gray
import numpy as np
import matplotlib.pyplot as plt
im = rgb2gray(imread('sLUel.png'))
#im = (im > 0).astype(np.uint8)
#labeled = morph.label(morph.binary_opening(im, selem=morph.disk(radius=2)), connectivity=2)
labeled = morph.label(im, connectivity=2)
print(len(np.unique(labeled)))
for i in np.unique(labeled)[1:]: # skip the first component since it's the background
im_obj = np.zeros(im.shape)
im_obj[labeled == i] = 1
imsave('sLUel_{:03d}.png'.format(i), im_obj)
plt.figure(figsize=(20,10))
plt.subplot(121), plt.imshow(im), plt.axis('off'), plt.title('original binary image', size=15)
plt.subplot(122), plt.imshow(labeled, cmap='spectral'), plt.axis('off'), plt.title('connected components (radius 2)', size=15)
plt.show()
Run Code Online (Sandbox Code Playgroud)
具有以下输出
以下是识别和分离的细胞: