C# Vector<double>.CopyTo 仅比非 SIMD 版本快多少?

Pau*_*ott 5 html c# vector simd

更新:之前提到的跨度问题已在 .net core 2.1 版本(目前处于预览版)中得到修复。这些实际上使跨度向量 * 比数组向量更快 * ...

注意:在“Intel Xeon E5-1660 v4”上进行测试,CPU-Z 告诉我有“MMX、SSE、SSE2、SSE3、SSSE3、SSE4.1、SSE4.2、EM64T、VT-x、AES、 AVX、AVX2、FMA3、RSX”所以应该没问题......

在回答基于Vector 的问题之后,我想我会尝试实现一些 BLAS 功能。我发现那些正在读取/求和(例如点积)的内容非常好,但是我写回数组的内容很糟糕 - 比非 SIMD 好,但几乎没有。

那么我做错了什么,还是需要在 JIT 中做更多的工作?

示例(假设 x.Length = y.Length,不为 null 等等等等):

public static void daxpy(double alpha, double[] x, double[] y)
{
    for (var i = 0; i < x.Length; ++i)
        y[i] = y[i] + x[i] * alpha;
}
Run Code Online (Sandbox Code Playgroud)

以向量形式变为:

public static void daxpy(double alpha, double[] x, double[] y)
{
    var i = 0;
    if (Vector.IsHardwareAccelerated)
    {
        var length = x.Length + 1 - Vector<double>.Count;
        for (; i < length; i += Vector<double>.Count)
        {
            var valpha = new Vector<double>(alpha);
            var vx = new Vector<double>(x, i);
            var vy = new Vector<double>(y, i);
            (vy + vx * valpha).CopyTo(y, i);
        }
    }
    for (; i < x.Length; ++i)
        y[i] = y[i] + x[i] * alpha;
}
Run Code Online (Sandbox Code Playgroud)

而且,在 .NET Core 2.0 中玩弄,我虽然会尝试 Span,包括 naive 和 Vector 形式:

public static void daxpy(double alpha, Span<double> x, Span<double> y)
{
    for (var i = 0; i < x.Length; ++i)
        y[i] += x[i] * alpha;
}
Run Code Online (Sandbox Code Playgroud)

和矢量

public static void daxpy(double alpha, Span<double> x, Span<double> y)
{
    if (Vector.IsHardwareAccelerated)
    {
        var vx = x.NonPortableCast<double, Vector<double>>();
        var vy = y.NonPortableCast<double, Vector<double>>();

        var valpha = new Vector<double>(alpha);
        for (var i = 0; i < vx.Length; ++i)
            vy[i] += vx[i] * valpha;

        x = x.Slice(Vector<double>.Count * vx.Length);
        y = y.Slice(Vector<double>.Count * vy.Length);
    }

    for (var i = 0; i < x.Length; ++i)
        y[i] += x[i] * alpha;
}
Run Code Online (Sandbox Code Playgroud)

所以所有这些的相对时间是:

Naive       1.0
Vector      0.8
Span Naive  2.5 ==> Update: Span Naive  1.1
Span Vector 0.9 ==> Update: Span Vector 0.6
Run Code Online (Sandbox Code Playgroud)

所以我做错了什么吗?我很难想到一个更简单的例子,所以我不这么认为?

Mar*_*ell 1

您可能更想使用 2.1 进行测试而不是 2.0;在我的笔记本电脑上(与台式机相比,它的 SIMD 较差),我得到:

daxpy_naive x10000: 144ms
daxpy_arr_vector x10000: 77ms
daxpy_span x10000: 173ms
daxpy_vector x10000: 67ms
daxpy_vector_no_slice x10000: 67ms
Run Code Online (Sandbox Code Playgroud)

使用代码:

using System;
using System.Diagnostics;
using System.Numerics;
class Program
{
    static void Main(string[] args)
    {
        double alpha = 0.5;
        double[] x = new double[16 * 1024], y = new double[x.Length];
        var rand = new Random(12345);
        for (int i = 0; i < x.Length; i++)
            x[i] = rand.NextDouble();

        RunAll(alpha, x, y, 1, false);
        RunAll(alpha, x, y, 10000, true);
    }

    private static void RunAll(double alpha, double[] x, double[] y, int loop, bool log)
    {
        GC.Collect(GC.MaxGeneration);
        GC.WaitForPendingFinalizers();

        var watch = Stopwatch.StartNew();
        for(int i = 0; i < loop; i++)
        {
            daxpy_naive(alpha, x, y);
        }
        watch.Stop();
        if (log) Console.WriteLine($"{nameof(daxpy_naive)} x{loop}: {watch.ElapsedMilliseconds}ms");

        watch = Stopwatch.StartNew();
        for (int i = 0; i < loop; i++)
        {
            daxpy_arr_vector(alpha, x, y);
        }
        watch.Stop();
        if (log) Console.WriteLine($"{nameof(daxpy_arr_vector)} x{loop}: {watch.ElapsedMilliseconds}ms");


        watch = Stopwatch.StartNew();
        for (int i = 0; i < loop; i++)
        {
            daxpy_span(alpha, x, y);
        }
        watch.Stop();
        if (log) Console.WriteLine($"{nameof(daxpy_span)} x{loop}: {watch.ElapsedMilliseconds}ms");

        watch = Stopwatch.StartNew();
        for (int i = 0; i < loop; i++)
        {
            daxpy_vector(alpha, x, y);
        }
        watch.Stop();
        if (log) Console.WriteLine($"{nameof(daxpy_vector)} x{loop}: {watch.ElapsedMilliseconds}ms");

        watch = Stopwatch.StartNew();
        for (int i = 0; i < loop; i++)
        {
            daxpy_vector_no_slice(alpha, x, y);
        }
        watch.Stop();
        if (log) Console.WriteLine($"{nameof(daxpy_vector_no_slice)} x{loop}: {watch.ElapsedMilliseconds}ms");
    }

    public static void daxpy_naive(double alpha, double[] x, double[] y)
    {
        for (var i = 0; i < x.Length; ++i)
            y[i] = y[i] + x[i] * alpha;
    }

    public static void daxpy_arr_vector(double alpha, double[] x, double[] y)
    {
        var i = 0;
        if (Vector.IsHardwareAccelerated)
        {
            var length = x.Length + 1 - Vector<double>.Count;
            for (; i < length; i += Vector<double>.Count)
            {
                var valpha = new Vector<double>(alpha);
                var vx = new Vector<double>(x, i);
                var vy = new Vector<double>(y, i);
                (vy + vx * valpha).CopyTo(y, i);
            }
        }
        for (; i < x.Length; ++i)
            y[i] = y[i] + x[i] * alpha;
    }
    public static void daxpy_span(double alpha, Span<double> x, Span<double> y)
    {
        for (var i = 0; i < x.Length; ++i)
            y[i] += x[i] * alpha;
    }

    public static void daxpy_vector(double alpha, Span<double> x, Span<double> y)
    {
        if (Vector.IsHardwareAccelerated)
        {
            var vx = x.NonPortableCast<double, Vector<double>>();
            var vy = y.NonPortableCast<double, Vector<double>>();

            var valpha = new Vector<double>(alpha);
            for (var i = 0; i < vx.Length; ++i)
                vy[i] += vx[i] * valpha;

            x = x.Slice(Vector<double>.Count * vx.Length);
            y = y.Slice(Vector<double>.Count * vy.Length);
        }

        for (var i = 0; i < x.Length; ++i)
            y[i] += x[i] * alpha;
    }

    public static void daxpy_vector_no_slice(double alpha, Span<double> x, Span<double> y)
    {
        int i = 0;
        if (Vector.IsHardwareAccelerated)
        {
            var vx = x.NonPortableCast<double, Vector<double>>();
            var vy = y.NonPortableCast<double, Vector<double>>();

            var valpha = new Vector<double>(alpha);
            for (i = 0; i < vx.Length; ++i)
                vy[i] += vx[i] * valpha;

            i = Vector<double>.Count * vx.Length;
        }

        for (; i < x.Length; ++i)
            y[i] += x[i] * alpha;
    }
}
Run Code Online (Sandbox Code Playgroud)

它正在使用dotnet build -c Releasedotnet run -c Release,并dotnet --version报告“2.2.0-preview1-008000”(不久前的“每日”)。

在我的桌面上,我希望差异会更好。