Lio*_*ens 7 r variance logistic-regression
我想模拟逻辑回归的数据,我可以事先指定其解释的方差.看看下面的代码.我模拟了四个自变量,并指定每个logit系数的大小应为log(2)= 0.69.这很好用,解释的方差(我报告Cox和Snell的r2)是0.34.
但是,我需要指定回归系数,使得预先指定的r2将来自回归.因此,如果我想产生一个让我们说的精确到0.1的r2.如何指定系数?我有点挣扎着......
# Create independent variables
sigma.1 <- matrix(c(1,0.25,0.25,0.25,
0.25,1,0.25,0.25,
0.25,0.25,1,0.25,
0.25,0.25,0.25,1),nrow=4,ncol=4)
mu.1 <- rep(0,4)
n.obs <- 500000
library(MASS)
sample1 <- as.data.frame(mvrnorm(n = n.obs, mu.1, sigma.1, empirical=FALSE))
# Create latent continuous response variable
sample1$ystar <- 0 + log(2)*sample1$V1 + log(2)*sample1$V2 + log(2)*sample1$V3 + log(2)*sample1$V4
# Construct binary response variable
sample1$prob <- exp(sample1$ystar) / (1 + exp(sample1$ystar))
sample1$y <- rbinom(n.obs,size=1,prob=sample1$prob)
# Logistic regression
logreg <- glm(y ~ V1 + V2 + V3 + V4, data=sample1, family=binomial)
summary(logreg)
Run Code Online (Sandbox Code Playgroud)
输出是:
Call:
glm(formula = y ~ V1 + V2 + V3 + V4, family = binomial, data = sample1)
Deviance Residuals:
Min 1Q Median 3Q Max
-3.7536 -0.7795 -0.0755 0.7813 3.3382
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.002098 0.003544 -0.592 0.554
V1 0.691034 0.004089 169.014 <2e-16 ***
V2 0.694052 0.004088 169.776 <2e-16 ***
V3 0.693222 0.004079 169.940 <2e-16 ***
V4 0.699091 0.004081 171.310 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 693146 on 499999 degrees of freedom
Residual deviance: 482506 on 499995 degrees of freedom
AIC: 482516
Number of Fisher Scoring iterations: 5
Run Code Online (Sandbox Code Playgroud)
Cox和Snell的r2给出:
library(pscl)
pR2(logreg)["r2ML"]
> pR2(logreg)["r2ML"]
r2ML
0.3436523
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
446 次 |
| 最近记录: |