代码如下:
import spacy
from nltk import Tree
en_nlp = spacy.load('en')
parsed = en_nlp(u"Photos under low lighting are poor, both front and back cameras.")
print(u'sentence:{0}'.format(parsed.text))
try2 = []
print(u'parsed_sentence_children::{0}'.format([(x.text,x.pos_,x.dep_,[(x.text,x.dep_) for x in list(x.children)]) for x in parsed]))
print("\n\n")
for x in parsed:
if x.pos_=="NOUN" and x.dep_=="nsubj":
print(u'Noun and noun subject:{0}'.format(try2 =[(x.text,x.pos_,x.dep_,[(x.text,x.pos_)for x in list(x.ancestors)])])
Run Code Online (Sandbox Code Playgroud)
其输出是:
[(u'Photos', u'NOUN', u'nsubj', [(u'are', u'VERB')]
现在我希望打印acomp以下子项:
[(u'are', u'VERB')]
这是以下项的祖先:
[(u'Photos', u'NOUN', u'nsubj')]
我怎样才能做到这一点?
您可以遍历令牌:
import spacy
nlp = spacy.load('en')
text = 'Photos under low lighting are poor, both front and back cameras.'
for token in nlp(text):
if token.dep_ == 'nsubj': # Or other forms of subjects / objects
print(token.lemma_+"'s are:")
for a in token.ancestors:
if a.text == 'are': # Or however you determine your selection
for atok in a.children:
if atok.dep_ == 'acomp': # Note, you should look for more than just acomp
print(atok.text)
Run Code Online (Sandbox Code Playgroud)
其输出(在Python3中):
photo's are:
poor
Run Code Online (Sandbox Code Playgroud)
不过,请查看Spacy 的关于依赖关系的页面。有很多事情需要考虑。您可以使用DisplaCy(此链接也是类似句子的示例,具有不同的依赖关系)。
我希望这至少可以帮助您指明正确的方向!