从这里使用Memoized装饰器的接受答案(带有doctests): 可以做些什么来加速这个memoization装饰器?
和以下代码(fib.py):
class O(object):
def nfib(self,n): # non-memoized fib fn
if n in (0, 1):
return n
return self.nfib(n-1) + self.nfib(n-2)
@Memoized
def fib(self,n): # memoized fib fn
if n in (0, 1):
return n
return self.fib(n-1) + self.fib(n-2)
if __name__ == '__main__':
import time
o = O()
stime = time.time()
print "starting non-memoized"
for i in range(10):
print o.nfib(32)
print "finished non-memoized - elapsed secs =", time.time() - stime
stime = time.time()
print "starting memoized"
for i in range(10):
print o.fib(32)
print "finished memoized - elapsed secs =", time.time() - stime
stime = time.time()
print "starting memoized with reset"
for i in range(10):
Memoized.reset()
print o.fib(32)
print "finished memoized with reset - elapsed secs =", time.time() - stime
Run Code Online (Sandbox Code Playgroud)
我得到以下输出:
C:\TEMP>python fib.py
starting non-memoized
2178309
2178309
2178309
2178309
2178309
2178309
2178309
2178309
2178309
2178309
finished non-memoized - elapsed secs = 16.4189999104
starting memoized
2178309
2178309
2178309
2178309
2178309
2178309
2178309
2178309
2178309
2178309
finished memoized - elapsed secs = 0.00100016593933
starting memoized with reset
2178309
2178309
2178309
2178309
2178309
2178309
2178309
2178309
2178309
2178309
finished memoized with reset - elapsed secs = 0.00299978256226
C:\TEMP>
Run Code Online (Sandbox Code Playgroud)
我希望第三个循环可以和第一个循环一样长,因为它每次都通过循环重置它的缓存.将调试语句插入到fib方法中会显示它没有被缓存,并且确实在第三个循环中计算结果,但它比第一个循环大得多.为什么???
我希望我忽略了一些令人尴尬的事情,但我的好奇心目前超过了我的骄傲.(顺便说一句,如果重要,我在Windows 7专业机器上使用64位python 2.7)
谢谢.
归档时间: |
|
查看次数: |
85 次 |
最近记录: |