dat*_*ack 0 scala apache-spark apache-spark-sql spark-dataframe
我想用三个输入参数编写通用方法:
因此,我的想法是编写这样的方法:
def load_sms_ds(filePath: String, schemaInfo: ?, cc: ?) = {
val ds = spark.read
.format("csv")
.option("header", "true")
.schema(?)
.option("delimiter",",")
.option("dateFormat", "yyyy-MM-dd HH:mm:ss.SSS")
.load(schemaInfo)
.as[?]
ds
}
Run Code Online (Sandbox Code Playgroud)
并根据输入参数返回数据集。我不确定参数schemaInfo和cc应该是哪种类型?
首先,我建议阅读spark sql编程指南。这包含一些我认为通常会在您学习火花时对您有所帮助的东西。
让我们使用案例类定义模式来完成读取csv文件的过程。
首先添加此示例所需的变量导入:
import java.io.{File, PrintWriter} // for reading / writing the example data
import org.apache.spark.sql.types.{StringType, StructField} // to define the schema
import org.apache.spark.sql.catalyst.ScalaReflection // used to generate the schema from a case class
import scala.reflect.runtime.universe.TypeTag // used to provide type information of the case class at runtime
import org.apache.spark.sql.Dataset, SparkSession}
import org.apache.spark.sql.Encoder // Used by spark to generate the schema
Run Code Online (Sandbox Code Playgroud)
定义一个案例类,可以在这里找到不同的类型:
case class Example(
stringField : String,
intField : Int,
doubleField : Double
)
Run Code Online (Sandbox Code Playgroud)
给定案例类类型作为参数,添加用于提取架构的方法(StructType):
// T : TypeTag means that an implicit value of type TypeTag[T] must be available at the method call site. Scala will automatically generate this for you. See [here][3] for further details.
def schemaOf[T: TypeTag]: StructType = {
ScalaReflection
.schemaFor[T] // this method requires a TypeTag for T
.dataType
.asInstanceOf[StructType] // cast it to a StructType, what spark requires as its Schema
}
Run Code Online (Sandbox Code Playgroud)
Defnie一个方法,该方法从具有使用case类定义的架构的路径中读取csv文件:
// The implicit Encoder is needed by the `.at` method in order to create the Dataset[T]. The TypeTag is required by the schemaOf[T] call.
def readCSV[T : Encoder : TypeTag](
filePath: String
)(implicit spark : SparkSession) : Dataset[T]= {
spark.read
.option("header", "true")
.option("dateFormat", "yyyy-MM-dd HH:mm:ss.SSS")
.schema(schemaOf[T])
.csv(filePath) // spark provides this more explicit call to read from a csv file by default it uses comma and the separator but this can be changes.
.as[T]
}
Run Code Online (Sandbox Code Playgroud)
创建一个sparkSession:
implicit val spark = SparkSession.builder().master("local").getOrCreate()
Run Code Online (Sandbox Code Playgroud)
将一些示例数据写入临时文件:
val data =
s"""|stringField,intField,doubleField
|hello,1,1.0
|world,2,2.0
|""".stripMargin
val file = File.createTempFile("test",".csv")
val pw = new PrintWriter(file)
pw.write(data)
pw.close()
Run Code Online (Sandbox Code Playgroud)
调用此方法的示例:
import spark.implicits._ // so that an implicit Encoder gets pulled in for the case class
val df = readCSV[Example](file.getPath)
df.show()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
880 次 |
| 最近记录: |