Mil*_*lvi 6 python numpy keras tensorflow
这是在Keras中定义自定义损失函数。代码如下:
from keras import backend as K
from keras.models import Sequential
from keras.layers import Dense
from keras.callbacks import EarlyStopping
from keras.optimizers import Adam
def custom_loss_function(y_true, y_pred):
a_numpy_y_true_array = K.eval(y_true)
a_numpy_y_pred_array = K.eval(y_pred)
# some million dollar worth custom loss that needs numpy arrays to be added here...
return K.mean(K.binary_crossentropy(y_true, y_pred), axis=-1)
def build_model():
model= Sequential()
model.add(Dense(16, input_shape=(701, ), activation='relu'))
model.add(Dense(16, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss=custom_loss_function, optimizer=Adam(lr=0.005), metrics=['accuracy'])
return model
model = build_model()
early_stop = EarlyStopping(monitor="val_loss", patience=1)
model.fit(kpca_X, y, epochs=50, validation_split=0.2, callbacks=[early_stop], verbose=False)
Run Code Online (Sandbox Code Playgroud)
上面的代码返回以下错误:
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
D:\milind.dalvi\personal\_python\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
1326 try:
-> 1327 return fn(*args)
1328 except errors.OpError as e:
D:\milind.dalvi\personal\_python\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1305 feed_dict, fetch_list, target_list,
-> 1306 status, run_metadata)
1307
D:\milind.dalvi\personal\_python\Anaconda3\lib\contextlib.py in __exit__(self, type, value, traceback)
88 try:
---> 89 next(self.gen)
90 except StopIteration:
D:\milind.dalvi\personal\_python\Anaconda3\lib\site-packages\tensorflow\python\framework\errors_impl.py in raise_exception_on_not_ok_status()
465 compat.as_text(pywrap_tensorflow.TF_Message(status)),
--> 466 pywrap_tensorflow.TF_GetCode(status))
467 finally:
InvalidArgumentError: You must feed a value for placeholder tensor 'dense_84_target' with dtype float and shape [?,?]
[[Node: dense_84_target = Placeholder[dtype=DT_FLOAT, shape=[?,?], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Run Code Online (Sandbox Code Playgroud)
所以任何人都知道我们如何转换y_true以及将y_pred其转换Tensor("dense_84_target:0", shape=(?, ?), dtype=float32)为numpy数组
编辑: ------------------------------------------------ --------
基本上,我希望在损失函数中编写的内容如下:
def custom_loss_function(y_true, y_pred):
classifieds = []
for actual, predicted in zip(y_true, y_pred):
if predicted == 1:
classifieds.append(actual)
classification_score = abs(classifieds.count(0) - classifieds.count(1))
return SOME_MAGIC_FUNCTION_TO_CONVERT_INT_TO_TENSOR(classification_score)
Run Code Online (Sandbox Code Playgroud)
损失函数随模型一起编译。在编译时,y_true而y_pred仅仅是占位张量,所以他们没有价值还,因此不能进行评估。这就是为什么您收到错误消息的原因。
您的损失函数应使用Keras张量,而不是它们求值的numpy数组。如果您需要使用其他numpy数组,请通过(Keras Backend Documentation)的variable方法将它们转换为张量。keras.backend
编辑:
您仍然需要留在Keras函数空间中,以使损失工作正常。如果这是您要实现的具体损失函数,并且假定您的值在{0,1}中,则可以尝试如下操作:
import keras.backend as K
def custom_loss_function(y_true, y_pred):
y_true = y_true*2 - K.ones_like(y_true) # re-codes values of y_true from {0,1} to {-1,+1}
y_true = y_true*y_pred # makes the values that you are not interested in equal to zero
classification_score = K.abs(K.sum(y_true))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
4681 次 |
| 最近记录: |