将字典嵌套到 Pandas DataFrame

ba_*_*_ul 3 python dictionary dataframe pandas

我的数据如下所示:

{ outer_key1 : [ {key1: some_value},
                {key2: some_value},
                {key3: some_value} ],
  outer_key2 : [ {key1: some_value},
                {key2: some_value},
                {key3: some_value} ] }
Run Code Online (Sandbox Code Playgroud)

内部数组的长度始终相同。key1、key2、key3 也总是相同的。

我想将其转换为 Pandas DataFrame,其中 outer_key1、outer_key2、... 是索引,key1、key2、key3 是列。

编辑:

数据中存在问题,我认为这是给定解决方案不起作用的原因。在少数情况下,内部数组中有三个Nones 而不是三个字典。像这样:

outer_key3: [ None, None, None ]

jpp*_*jpp 5

这是一种方法:

d = { 'O1' : [ {'K1': 1},
               {'K2': 2},
               {'K3': 3} ],
      'O2' : [ {'K1': 4},
               {'K2': 5},
               {'K3': 6} ] }

d = {k: { k: v for d in L for k, v in d.items() } for k, L in d.items()}

df = pd.DataFrame.from_dict(d, orient='index')

#     K1  K2  K3
# O1   1   2   3
# O2   4   5   6
Run Code Online (Sandbox Code Playgroud)

替代解决方案:

df = pd.DataFrame(d).T
Run Code Online (Sandbox Code Playgroud)

比较繁琐的None数据方法:

d = { 'O1' : [ {'K1': 1},
               {'K2': 2},
               {'K3': 3} ],
      'O2' : [ {'K1': 4},
               {'K2': 5},
               {'K3': 6} ],
      'O3' : [ {'K1': None},
               {'K2': None},
               {'K3': None} ] }

d = {k: v if isinstance(v[0], dict) else [{k: None} for k in ('K1', 'K2','K3')] for k, v in d.items()}
d = {k: { k: v for d in L for k, v in d.items() } for k, L in d.items()}

df = pd.DataFrame.from_dict(d, orient='index')

#      K1   K2   K3
# O1  1.0  2.0  3.0
# O2  4.0  5.0  6.0
# O3  NaN  NaN  NaN
Run Code Online (Sandbox Code Playgroud)