在下面的数据集中,我需要找到唯一的序列并为其分配一个序列号..
数据集:
user age maritalstatus product
A Young married 111
B young married 222
C young Single 111
D old single 222
E old married 111
F teen married 222
G teen married 555
H adult single 444
I adult single 333
Run Code Online (Sandbox Code Playgroud)
预期产量:
young married 0
young single 1
old single 2
old married 3
teen married 4
adult single 5
Run Code Online (Sandbox Code Playgroud)
找到上面显示的唯一值后,如果我通过下面的新用户,
user age maritalstatus
X young married
Run Code Online (Sandbox Code Playgroud)
它应该把产品退给我。
X : [111, 222]
Run Code Online (Sandbox Code Playgroud)
如果没有顺序,如下所示
user age maritalstatus
Y adult married
Run Code Online (Sandbox Code Playgroud)
它应该给我一个空列表
Y : []
Run Code Online (Sandbox Code Playgroud)
首先仅选择用于输出和添加的列drop_duplicates,最后通过range以下方式添加新列:
df = df[['age','maritalstatus']].drop_duplicates()
df['no'] = range(len(df.index))
print (df)
age maritalstatus no
0 Young married 0
1 young married 1
2 young Single 2
3 old single 3
4 old married 4
5 teen married 5
7 adult single 6
Run Code Online (Sandbox Code Playgroud)
如果要先将所有值转换为小写:
df = df[['age','maritalstatus']].apply(lambda x: x.str.lower()).drop_duplicates()
df['no'] = range(len(df.index))
print (df)
age maritalstatus no
0 young married 0
2 young single 1
3 old single 2
4 old married 3
5 teen married 4
7 adult single 5
Run Code Online (Sandbox Code Playgroud)
编辑:
首先转换为lowercase:
df[['age','maritalstatus']] = df[['age','maritalstatus']].apply(lambda x: x.str.lower())
print (df)
user age maritalstatus product
0 A young married 111
1 B young married 222
2 C young single 111
3 D old single 222
4 E old married 111
5 F teen married 222
6 G teen married 555
7 H adult single 444
8 I adult single 333
Run Code Online (Sandbox Code Playgroud)
然后将mergefor用于product转换为list:
df2 = pd.DataFrame([{'user':'X', 'age':'young', 'maritalstatus':'married'}])
print (df2)
age maritalstatus user
0 young married X
a = pd.merge(df, df2, on=['age','maritalstatus'])['product'].unique().tolist()
print (a)
[111, 222]
Run Code Online (Sandbox Code Playgroud)
df2 = pd.DataFrame([{'user':'X', 'age':'adult', 'maritalstatus':'married'}])
print (df2)
age maritalstatus user
0 adult married X
a = pd.merge(df, df2, on=['age','maritalstatus'])['product'].unique().tolist()
print (a)
[]
Run Code Online (Sandbox Code Playgroud)
但是如果需要使用列transform:
df['prod'] = df.groupby(['age', 'maritalstatus'])['product'].transform('unique')
print (df)
user age maritalstatus product prod
0 A young married 111 [111, 222]
1 B young married 222 [111, 222]
2 C young single 111 [111]
3 D old single 222 [222]
4 E old married 111 [111]
5 F teen married 222 [222, 555]
6 G teen married 555 [222, 555]
7 H adult single 444 [444, 333]
8 I adult single 333 [444, 333]
Run Code Online (Sandbox Code Playgroud)
编辑1:
a = (pd.merge(df, df2, on=['age','maritalstatus'])
.groupby('user_y')['product']
.apply(lambda x: x.unique().tolist())
.to_dict())
print (a)
{'X': [111, 222]}
Run Code Online (Sandbox Code Playgroud)
详细说明:
print (pd.merge(df, df2, on=['age','maritalstatus']))
user_x age maritalstatus product user_y
0 A young married 111 X
1 B young married 222 X
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2547 次 |
| 最近记录: |