ian*_*han 3 python indexing union pandas
我不确定这是否是正确的表达方式,但是搜索合并或更改索引并没有帮助我。基本上我有两个数据框:
df_A = pd.DataFrame(1, index=[1,2,3], columns = [1,2,3])
df_B = pd.DataFrame(0, index=[1,2,4], columns = [1,2,5])
Run Code Online (Sandbox Code Playgroud)
我想对df_A和df_B进行转换,使它们共享相同的索引和列,这是两者的并集。缺少的值将用NaN填充:
df_A_new:
1 2 3 5
index
1 1 1 1 NaN
2 1 1 1 NaN
3 1 1 1 NaN
4 NaN NaN NaN NaN
df_B_new:
1 2 3 5
index
1 0 0 NaN 0
2 0 0 NaN 0
3 NaN NaN NaN NaN
4 0 0 NaN 0
Run Code Online (Sandbox Code Playgroud)
rows = df_A.index.union(df_B.index)
cols = df_A.columns.union(df_B.columns)
df_A_new = df_A.reindex(index=rows, columns=cols)
df_B_new = df_B.reindex(index=rows, columns=cols)
Run Code Online (Sandbox Code Playgroud)
df_A_new
看起来像
1 2 3 5
1 1.0 1.0 1.0 NaN
2 1.0 1.0 1.0 NaN
3 1.0 1.0 1.0 NaN
4 NaN NaN NaN NaN
Run Code Online (Sandbox Code Playgroud)
df_B_new
看起来像:
1 2 3 5
1 0.0 0.0 NaN 0.0
2 0.0 0.0 NaN 0.0
3 NaN NaN NaN NaN
4 0.0 0.0 NaN 0.0
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
752 次 |
最近记录: |