PyTorch:使用torchvision.datasets.ImageFolder和DataLoader进行测试

ket*_*ett 5 python pytorch

我是一个新手,试图通过kaggle的Cats&Dogs数据集使用此PyTorch CNN 。由于测试图像没有目标,因此我手动对一些测试图像进​​行了分类,然后将该类放入文件名中,以便进行测试(也许应该只使用了一些训练图像)。

我使用了torchvision.datasets.ImageFolder类来加载训练和测试图像。训练似乎奏效。

但是,我需要做些什么才能使例程正常工作?我不知道如何通过test_x和test_y将test_data_loader与底部的测试循环连接。

该代码基于此MNIST示例CNN。在那里,在创建装载程序后立即使用类似的方法。但是我没有为我的数据集重写它:

test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1), volatile=True).type(torch.FloatTensor)[:2000]/255.   # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
test_y = test_data.test_labels[:2000]
Run Code Online (Sandbox Code Playgroud)

代码:

import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.utils.data as data
import torchvision
from torchvision import transforms

EPOCHS = 2
BATCH_SIZE = 10
LEARNING_RATE = 0.003
TRAIN_DATA_PATH = "./train_cl/"
TEST_DATA_PATH = "./test_named_cl/"
TRANSFORM_IMG = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(256),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225] )
    ])

train_data = torchvision.datasets.ImageFolder(root=TRAIN_DATA_PATH, transform=TRANSFORM_IMG)
train_data_loader = data.DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True,  num_workers=4)
test_data = torchvision.datasets.ImageFolder(root=TEST_DATA_PATH, transform=TRANSFORM_IMG)
test_data_loader  = data.DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=4) 

class CNN(nn.Module):
    # omitted...

if __name__ == '__main__':

    print("Number of train samples: ", len(train_data))
    print("Number of test samples: ", len(test_data))
    print("Detected Classes are: ", train_data.class_to_idx) # classes are detected by folder structure

    model = CNN()    
    optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
    loss_func = nn.CrossEntropyLoss()    

    # Training and Testing
    for epoch in range(EPOCHS):        
        for step, (x, y) in enumerate(train_data_loader):
            b_x = Variable(x)   # batch x (image)
            b_y = Variable(y)   # batch y (target)
            output = model(b_x)[0]          
            loss = loss_func(output, b_y)   
            optimizer.zero_grad()           
            loss.backward()                 
            optimizer.step()

            # Test -> this is where I have no clue
            if step % 50 == 0:
                test_x = Variable(test_data_loader)
                test_output, last_layer = model(test_x)
                pred_y = torch.max(test_output, 1)[1].data.squeeze()
                accuracy = sum(pred_y == test_y) / float(test_y.size(0))
                print('Epoch: ', epoch, '| train loss: %.4f' % loss.data[0], '| test accuracy: %.2f' % accuracy)
Run Code Online (Sandbox Code Playgroud)

Mon*_*ter 8

查看来自Kaggle的数据和您的代码,看来在训练和测试集的数据加载中都存在问题。首先,数据应位于每个标签的其他文件夹中,以便默认PyTorch ImageFolder正确加载它。在您的情况下,由于所有培训数据都位于同一文件夹中,因此PyTorch将其作为一个类加载,因此学习似乎很有效。您可以使用- train/dog,- train/cat,- test/dog,- 等文件夹结构来更正此问题test/cat,然后将火车和测试文件夹ImageFolder分别传递到火车和测试。训练代码看起来不错,只需更改文件夹结构,您就可以了。看一下ImageFolder的官方文档,其中有一个类似的示例。

  • @Royi 我不认为有任何直接的方法可以做到这一点(我知道)。但是您可以扩展数据集类并执行此操作。这是官方 [PyTorch 教程](http://pytorch.org/tutorials/beginner/data_loading_tutorial.html#dataset-class) 的示例。您可以修改它并删除额外的东西,它应该可以正常工作。让我知道这是否适合您。 (2认同)

Mo-*_*ang 5

根据上面@Monster 的评论,这是我的 ImageFolder 文件夹结构

在此输入图像描述

这就是我加载数据集的方式:

    train_dataset=datasets.ImageFolder(root="./root/",transform=train_transforms)
Run Code Online (Sandbox Code Playgroud)