KJN*_*KJN 3 opticalflow deep-learning conv-neural-network keras tensorflow
I'm trying to implement the model described in this paper.
One item I've having trouble with is setting up the input, which is supposed to be two images stacked, meaning, I have a set of consecutive (i & i+1) images 2048x2048x1 (monochrome), so the input tensor would be 2048x2048x2, but each successive input to the neural net would be the following set of images (i+1 & i+2).
So far I have
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Concatenate, Activation, Conv2D, MaxPooling2D, Flatten, Input
from keras.klayers import Embedding,LSTM
inp1 = Input((2048,2048,1))
inp2 = Input((2048,2048,1))
deepVO = Sequential()
deepVO.add(Concatenate(inp1,inp2,-1))
deepVO.add(Conv2D(64,(2,2)))
deepVO.add(Activation('relu'))
#....continue to add other layers
Run Code Online (Sandbox Code Playgroud)
The error I get at deepVO_CNN.add(Concatenate(inp1,inp2,-1)) is:
TypeError: __init__() takes from 1 to 2 positional arguments but 4 were given.
像这样尝试 keras api 模式:
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, Conv2D, MaxPooling2D, Flatten, Input, concatenate
from keras.models import Model
inp1 = Input((2048,2048,1))
inp2 = Input((2048,2048,1))
deepVO = concatenate([inp1, inp2],axis=-1)
deepVO = Conv2D(64,(2,2))(deepVO)
deepVO = Activation('relu')(deepVO)
...
...
outputs = Dense(num_classes, activation='softmax')(deepVO)
deepVO = Model([inp1, inp2], outputs)
#deepVO.summary()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2809 次 |
| 最近记录: |