use*_*816 4 conditional r sum dplyr data.table
我有一个由-1s和1s组成的信号位置指示器矢量。另外,我还有一些要基于Signal值求和的体数据。基本数据表如下所示:
df <- cbind(Signal, Volume)
head(df, 20)
Signal Volume
2016-01-04 NA 37912403
2016-01-05 -1 23258238
2016-01-06 -1 25096183
2016-01-07 -1 45172906
2016-01-08 -1 35402298
2016-01-11 -1 29932385
2016-01-12 -1 28395390
2016-01-13 -1 33410553
2016-01-14 -1 48658623
2016-01-15 1 46132781
2016-01-19 1 30998256
2016-01-20 -1 59051429
2016-01-21 1 30518939
2016-01-22 1 30495387
2016-01-25 1 32482015
2016-01-26 -1 26877080
2016-01-27 -1 58699359
2016-01-28 1 107475327
2016-01-29 1 62739548
2016-02-01 1 46132726
Run Code Online (Sandbox Code Playgroud)
我想实现的是(不使用for循环)生成一个cum Volume的矢量,每次信号改变时都会重置。此外,音量值应乘以信号值,即,当信号为-1时,应将-Volume加到当前的cum Volume。基于类似的问题,我尝试了
ave(df$a, cumsum(c(F, diff(sign(diff(df$a))) != 0)*df$Volume), FUN=seq_along)
Run Code Online (Sandbox Code Playgroud)
会产生正确的信号分组,但由于某种原因未包括音量。没有重置,解决方案就相当简单(张贴在SO上)
require(data.table)
DT <- data.table(dt)
DT[, Cum.Sum := cumsum(Volume), by=Signal]
Run Code Online (Sandbox Code Playgroud)
有谁知道dplyr或data.table类型的解决方案,用于重置和调整总和?谢谢。
这可以通过以下方式实现:
library(tidyverse)
library(data.table)
z %>%
group_by(rleid(Signal)) %>% #advance value every time Signal changes and group by that
mutate(cum = Signal*cumsum(Volume)) %>% #cumsum in each group
ungroup() %>% #ungroup so you could remove the grouping column
select(-4) #remove grouping column
Run Code Online (Sandbox Code Playgroud)
或不data.table使用rle:
z %>%
mutate(rl = rep(1:length(rle(Signal)$length), times = rle(Signal)$length)) %>%
group_by(rl) %>%
mutate(cum = Signal*cumsum(Volume)) %>%
ungroup() %>%
select(-4)
#output
date Signal Volume cum
<fct> <int> <int> <int>
1 2016-01-04 NA 37912403 NA
2 2016-01-05 - 1 23258238 - 23258238
3 2016-01-06 - 1 25096183 - 48354421
4 2016-01-07 - 1 45172906 - 93527327
5 2016-01-08 - 1 35402298 -128929625
6 2016-01-11 - 1 29932385 -158862010
7 2016-01-12 - 1 28395390 -187257400
8 2016-01-13 - 1 33410553 -220667953
9 2016-01-14 - 1 48658623 -269326576
10 2016-01-15 1 46132781 46132781
11 2016-01-19 1 30998256 77131037
12 2016-01-20 - 1 59051429 - 59051429
13 2016-01-21 1 30518939 30518939
14 2016-01-22 1 30495387 61014326
15 2016-01-25 1 32482015 93496341
16 2016-01-26 - 1 26877080 - 26877080
17 2016-01-27 - 1 58699359 - 85576439
18 2016-01-28 1 107475327 107475327
19 2016-01-29 1 62739548 170214875
20 2016-02-01 1 46132726 216347601
Run Code Online (Sandbox Code Playgroud)
数据:
z <- read.table(text = "date Signal Volume
2016-01-04 NA 37912403
2016-01-05 -1 23258238
2016-01-06 -1 25096183
2016-01-07 -1 45172906
2016-01-08 -1 35402298
2016-01-11 -1 29932385
2016-01-12 -1 28395390
2016-01-13 -1 33410553
2016-01-14 -1 48658623
2016-01-15 1 46132781
2016-01-19 1 30998256
2016-01-20 -1 59051429
2016-01-21 1 30518939
2016-01-22 1 30495387
2016-01-25 1 32482015
2016-01-26 -1 26877080
2016-01-27 -1 58699359
2016-01-28 1 107475327
2016-01-29 1 62739548
2016-02-01 1 46132726", header = T)
Run Code Online (Sandbox Code Playgroud)