Jef*_*eff 10 python machine-learning tensorflow
是否可以通过仅更改变量的某些元素来最小化损失函数?换句话说,如果我有一个X
长度为2 的变量,我如何通过改变X[0]
和保持X[1]
常数来最小化我的损失函数?
希望我试过的这段代码能描述我的问题:
import tensorflow as tf
import tensorflow.contrib.opt as opt
X = tf.Variable([1.0, 2.0])
X0 = tf.Variable([3.0])
Y = tf.constant([2.0, -3.0])
scatter = tf.scatter_update(X, [0], X0)
with tf.control_dependencies([scatter]):
loss = tf.reduce_sum(tf.squared_difference(X, Y))
opt = opt.ScipyOptimizerInterface(loss, [X0])
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
opt.minimize(sess)
print("X: {}".format(X.eval()))
print("X0: {}".format(X0.eval()))
Run Code Online (Sandbox Code Playgroud)
哪个输出:
INFO:tensorflow:Optimization terminated with:
Message: b'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'
Objective function value: 26.000000
Number of iterations: 0
Number of functions evaluations: 1
X: [3. 2.]
X0: [3.]
Run Code Online (Sandbox Code Playgroud)
在哪里我想找到最佳值,X0 = 2
从而X = [2, 2]
编辑
这样做的动机:我想导入训练有素的图形/模型,然后根据我的一些新数据调整一些变量的各种元素.
您可以使用此技巧将渐变计算限制为一个索引:
import tensorflow as tf
import tensorflow.contrib.opt as opt
X = tf.Variable([1.0, 2.0])
part_X = tf.scatter_nd([[0]], [X[0]], [2])
X_2 = part_X + tf.stop_gradient(-part_X + X)
Y = tf.constant([2.0, -3.0])
loss = tf.reduce_sum(tf.squared_difference(X_2, Y))
opt = opt.ScipyOptimizerInterface(loss, [X])
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
opt.minimize(sess)
print("X: {}".format(X.eval()))
Run Code Online (Sandbox Code Playgroud)
part_X
变为你想要在与X相同形状的单热矢量中改变的值.part_X + tf.stop_gradient(-part_X + X)
与正向传递中的X相同,因为part_X - part_X
是0.但是在向后传递中,tf.stop_gradient
防止所有不必要的梯度计算.
归档时间: |
|
查看次数: |
2026 次 |
最近记录: |