Jam*_*mes 4 python string dataframe pandas
我在pandas数据框中有一些字符串.我想在相邻列中搜索该字符串的存在.
在下面的例子中,我想搜索'choice'系列中的字符串是否包含在'fruit'系列中,在新列'choice_match'中返回true(1)或false(0).
示例DataFrame:
import pandas as pd
d = {'ID': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'fruit': [
'apple, banana', 'apple', 'apple', 'pineapple', 'apple, pineapple', 'orange', 'apple, orange', 'orange', 'banana', 'apple, peach'],
'choice': ['orange', 'orange', 'apple', 'pineapple', 'apple', 'orange', 'orange', 'orange', 'banana', 'banana']}
df = pd.DataFrame(data=d)
Run Code Online (Sandbox Code Playgroud)
期望的DataFrame:
import pandas as pd
d = {'ID': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'fruit': [
'apple, banana', 'apple', 'apple', 'pineapple', 'apple, pineapple', 'orange', 'apple, orange', 'orange', 'banana', 'apple, peach'],
'choice': ['orange', 'orange', 'apple', 'pineapple', 'apple', 'orange', 'orange', 'orange', 'banana', 'banana'],
'choice_match': [0, 0, 1, 1, 1, 1, 1, 1, 1, 0]}
df = pd.DataFrame(data=d)
Run Code Online (Sandbox Code Playgroud)
In [75]: df['choice_match'] = (df['fruit']
.str.split(',\s*', expand=True)
.eq(df['choice'], axis=0)
.any(1).astype(np.int8))
In [76]: df
Out[76]:
ID choice fruit choice_match
0 1 orange apple, banana 0
1 2 orange apple 0
2 3 apple apple 1
3 4 pineapple pineapple 1
4 5 apple apple, pineapple 1
5 6 orange orange 1
6 7 orange apple, orange 1
7 8 orange orange 1
8 9 banana banana 1
9 10 banana apple, peach 0
Run Code Online (Sandbox Code Playgroud)
一步步:
In [78]: df['fruit'].str.split(',\s*', expand=True)
Out[78]:
0 1
0 apple banana
1 apple None
2 apple None
3 pineapple None
4 apple pineapple
5 orange None
6 apple orange
7 orange None
8 banana None
9 apple peach
In [79]: df['fruit'].str.split(',\s*', expand=True).eq(df['choice'], axis=0)
Out[79]:
0 1
0 False False
1 False False
2 True False
3 True False
4 True False
5 True False
6 False True
7 True False
8 True False
9 False False
In [80]: df['fruit'].str.split(',\s*', expand=True).eq(df['choice'], axis=0).any(1)
Out[80]:
0 False
1 False
2 True
3 True
4 True
5 True
6 True
7 True
8 True
9 False
dtype: bool
In [81]: df['fruit'].str.split(',\s*', expand=True).eq(df['choice'], axis=0).any(1).astype(np.int8)
Out[81]:
0 0
1 0
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 0
dtype: int8
Run Code Online (Sandbox Code Playgroud)
这是一种方式:
df['choice_match'] = df.apply(lambda row: row['choice'] in row['fruit'].split(','),\
axis=1).astype(int)
Run Code Online (Sandbox Code Playgroud)
说明
df.apply与axis=1通过每行和循环应用逻辑; 它接受匿名lambda函数.row['fruit'].split(',')从fruit列创建列表.这是必要的,例如,apple不考虑pineapple.astype(int) 必须将布尔值转换为整数以便显示.| 归档时间: |
|
| 查看次数: |
87 次 |
| 最近记录: |