Sve*_*ven 10 r machine-learning lstm keras recurrent-neural-network
我正在通过本教程预测温度来尝试R中的Keras软件包.但是,本教程没有解释如何使用训练有素的RNN模型进行预测,我想知道如何做到这一点.为了训练模型,我使用了从教程中复制的以下代码:
dir.create("~/Downloads/jena_climate", recursive = TRUE)
download.file(
"https://s3.amazonaws.com/keras-datasets/jena_climate_2009_2016.csv.zip",
"~/Downloads/jena_climate/jena_climate_2009_2016.csv.zip"
)
unzip(
"~/Downloads/jena_climate/jena_climate_2009_2016.csv.zip",
exdir = "~/Downloads/jena_climate"
)
library(readr)
data_dir <- "~/Downloads/jena_climate"
fname <- file.path(data_dir, "jena_climate_2009_2016.csv")
data <- read_csv(fname)
data <- data.matrix(data[,-1])
train_data <- data[1:200000,]
mean <- apply(train_data, 2, mean)
std <- apply(train_data, 2, sd)
data <- scale(data, center = mean, scale = std)
generator <- function(data, lookback, delay, min_index, max_index,
shuffle = FALSE, batch_size = 128, step = 6) {
if (is.null(max_index))
max_index <- nrow(data) - delay - 1
i <- min_index + lookback
function() {
if (shuffle) {
rows <- sample(c((min_index+lookback):max_index), size = batch_size)
} else {
if (i + batch_size >= max_index)
i <<- min_index + lookback
rows <- c(i:min(i+batch_size, max_index))
i <<- i + length(rows)
}
samples <- array(0, dim = c(length(rows),
lookback / step,
dim(data)[[-1]]))
targets <- array(0, dim = c(length(rows)))
for (j in 1:length(rows)) {
indices <- seq(rows[[j]] - lookback, rows[[j]],
length.out = dim(samples)[[2]])
samples[j,,] <- data[indices,]
targets[[j]] <- data[rows[[j]] + delay,2]
}
list(samples, targets)
}
}
lookback <- 1440
step <- 6
delay <- 144
batch_size <- 128
train_gen <- generator(
data,
lookback = lookback,
delay = delay,
min_index = 1,
max_index = 200000,
shuffle = TRUE,
step = step,
batch_size = batch_size
)
val_gen = generator(
data,
lookback = lookback,
delay = delay,
min_index = 200001,
max_index = 300000,
step = step,
batch_size = batch_size
)
test_gen <- generator(
data,
lookback = lookback,
delay = delay,
min_index = 300001,
max_index = NULL,
step = step,
batch_size = batch_size
)
# How many steps to draw from val_gen in order to see the entire validation set
val_steps <- (300000 - 200001 - lookback) / batch_size
# How many steps to draw from test_gen in order to see the entire test set
test_steps <- (nrow(data) - 300001 - lookback) / batch_size
library(keras)
model <- keras_model_sequential() %>%
layer_flatten(input_shape = c(lookback / step, dim(data)[-1])) %>%
layer_dense(units = 32, activation = "relu") %>%
layer_dense(units = 1)
model %>% compile(
optimizer = optimizer_rmsprop(),
loss = "mae"
)
history <- model %>% fit_generator(
train_gen,
steps_per_epoch = 500,
epochs = 20,
validation_data = val_gen,
validation_steps = val_steps
)
Run Code Online (Sandbox Code Playgroud)
我试着用下面的代码预测温度.如果我是正确的,这应该给我每批的标准化预测温度.因此,当我对值进行非规范化并对它们求平均值时,我会得到预测的温度.这是正确的,如果是,那么预测的时间(最近的观察时间+ delay?)?
prediction.set <- test_gen()[[1]]
prediction <- predict(model, prediction.set)
Run Code Online (Sandbox Code Playgroud)
另外,正确的使用方法keras::predict_generator()和test_gen()功能是什么?如果我使用以下代码:
model %>% predict_generator(generator = test_gen,
steps = test_steps)
Run Code Online (Sandbox Code Playgroud)
它给出了这个错误:
error in py_call_impl(callable, dots$args, dots$keywords) :
ValueError: Error when checking model input: the list of Numpy
arrays that you are passing to your model is not the size the model expected.
Expected to see 1 array(s), but instead got the following list of 2 arrays:
[array([[[ 0.50394005, 0.6441838 , 0.5990761 , ..., 0.22060473,
0.2018686 , -1.7336458 ],
[ 0.5475698 , 0.63853574, 0.5890239 , ..., -0.45618412,
-0.45030192, -1.724062...
Run Code Online (Sandbox Code Playgroud)
注意:我对R的语法非常了解,因此很遗憾,我无法使用R给您答案。相反,我在答案中使用Python。希望您能轻易将至少我的话翻译回R。
...如果我是正确的,这应该给我每批的标准化温度。
是的,这是正确的。因为您已经使用标准化标签训练了预测,所以预测将被标准化:
data <- scale(data, center = mean, scale = std)
Run Code Online (Sandbox Code Playgroud)
因此,您需要使用计算出的均值和std对值进行归一化以找到真实的预测:
pred = model.predict(test_data)
denorm_pred = pred * std + mean
Run Code Online (Sandbox Code Playgroud)
...然后预测哪个时间(最新观察时间+延迟?)
那就对了。具体而言,由于在此特定数据集中每10分钟记录一次新的观测值,并且已进行设置delay=144,因此这意味着预测值是距上次给定观测值前24小时的温度(即144 * 10 = 1440分钟= 24小时) 。
另外,正确的使用方法
keras::predict_generator()和test_gen()功能是什么?
predict_generator采用一个仅提供测试样本而不提供标签的生成器作为输出(因为在执行预测时我们不需要标签;在训练(即fit_generator(),以及评估模型时,即evaluate_generator())时需要标签)。这就是为什么错误提示您需要传递一个数组而不是两个数组的原因。因此,您需要定义一个仅提供测试样本的生成器,或者在Python中,将现有的生成器包装在另一个仅提供输入样本的函数中(我不知道是否可以在R中完成此操作) ):
def pred_generator(gen):
for data, labels in gen:
yield data # discards labels
preds = model.predict_generator(pred_generator(test_generator), number_of_steps)
Run Code Online (Sandbox Code Playgroud)
您需要提供另一个参数,该参数是生成器涵盖测试数据中所有样本的步骤数。其实我们有num_steps = total_number_of_samples / batch_size。例如,如果您有1000个样本,并且每次生成器生成10个样本,则需要将生成器用于1000 / 10 = 100步骤。
奖励:要查看模型的效果如何,可以使用evaluate_generator现有的测试生成器(例如test_gen)使用:
loss = model.evaluate_generator(test_gen, number_of_steps)
Run Code Online (Sandbox Code Playgroud)
给定的loss值也经过归一化和去归一化(以获得更好的预测误差),您只需将其乘以std(mean因为您正在使用mae,即绝对误差作为损失函数,因此无需加法):
denorm_loss = loss * std
Run Code Online (Sandbox Code Playgroud)
这将告诉您平均而言您的预测有多少偏离。例如,如果您要预测温度,则a denorm_loss为5表示预测平均偏离5度(即小于或大于实际值)。
更新:为了进行预测,您可以使用R中的现有生成器来定义新生成器,如下所示:
pred_generator <- function(gen) {
function() { # wrap it in a function to make it callable
gen()[1] # call the given generator and get the first element (i.e. samples)
}
}
preds <- model %>%
predict_generator(
generator = pred_generator(test_gen), # pass test_gen directly to pred_generator without calling it
steps = test_steps
)
evaluate_generator(model, test_gen, test_steps)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1075 次 |
| 最近记录: |