什么是更快的操作,re.match/search或str.find?

Mik*_*ron 60 python performance

对于一次性字符串搜索,使用str.find/rfind比使用re.match/search更快吗?

也就是说,对于给定的字符串s,我应该使用:

if s.find('lookforme') > -1:
    do something
Run Code Online (Sandbox Code Playgroud)

要么

if re.match('lookforme',s):
    do something else
Run Code Online (Sandbox Code Playgroud)

use*_*312 136

问题:哪个更快,最好通过使用来回答timeit.

from timeit import timeit
import re

def find(string, text):
    if string.find(text) > -1:
        pass

def re_find(string, text):
    if re.match(text, string):
        pass

def best_find(string, text):
    if text in string:
       pass

print timeit("find(string, text)", "from __main__ import find; string='lookforme'; text='look'")  
print timeit("re_find(string, text)", "from __main__ import re_find; string='lookforme'; text='look'")  
print timeit("best_find(string, text)", "from __main__ import best_find; string='lookforme'; text='look'")  
Run Code Online (Sandbox Code Playgroud)

输出是:

0.441393852234
2.12302494049
0.251421928406
Run Code Online (Sandbox Code Playgroud)

因此,您不仅应该使用in运算符,因为它更容易阅读,但因为它也更快.

  • 你知道,这里减慢regexp的主要原因是每次都要编译模式.如果模式是预编译并反复使用,匹配只比使用find慢约25%. (21认同)
  • 你当然回答了这个问题,sukhbir.同意,虽然+1的可读性和你证明了答案是"pythonic"的答案. (5认同)
  • 显然,你通过召唤一个"best_find"引导自动陪审团;-) (4认同)
  • 微观优化最多可根据时间进行选择.但是,自从您指定了最易读的案例后+1 (3认同)
  • 对于具有多种可能性的模式,`re.match()`仍然比(连续)`更慢?例如`a | b | c | d | e | f`(预编译模式). (2认同)

Joc*_*zel 16

用这个:

if 'lookforme' in s:
    do something
Run Code Online (Sandbox Code Playgroud)

需要首先编译正则表达式,这会增加一些开销.无论如何,Python的普通字符串搜索非常有效.

如果你经常搜索相同的术语,或者你做一些更复杂的事情,那么正则表达式会变得更有用.

  • +1首先是pythonic - 然后,如果性能成为一个问题,探索不同的实现,看看它们是否提高了性能. (4认同)

小智 12

也许有人仍然感兴趣。\n给出的答案看起来不错,但只查看一个非常短的字符串。\n事实上,如果您采用一个长字符串并且您正在寻找的模式大致位于末尾,那么性能会发生变化,有利于正则表达式!

\n\n
import re\n\ndef find(string, text):\n    if string.find(text) > -1:\n        pass\n\ndef re_find(string, text):\n    if re.match(text, string):\n        pass\n\ndef best_find(string, text):\n    if text in string:\n       pass\n\nvery_long_string = \'sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd sasgda;dlaskjgasdlj sadlf;jsaf lkjvasdfa dsadkfldsfhsa svnsa;df adsfkj;ljkasdf asdf;lkjafd\'\npattern = \'look\'\nprint(\'pattern at the end of string\')\nprint(\'find:\', end=\' \')\n%timeit find(very_long_string + pattern, pattern)\nprint(\'regex:\', end=\' \')\n%timeit re_find(very_long_string + pattern, pattern)\nprint(\'in:\', end=\' \')\n%timeit best_find(very_long_string + pattern, pattern)\nprint(\'pattern in front of string\')\nprint(\'find:\', end=\' \')\n%timeit find(pattern + very_long_string, pattern)\nprint(\'regex:\', end=\' \')\n%timeit re_find(pattern + very_long_string, pattern)\nprint(\'in:\', end=\' \')\n%timeit best_find(pattern + very_long_string, pattern)\n
Run Code Online (Sandbox Code Playgroud)\n\n

给出输出:

\n\n
pattern at the end of string\nfind: 3.41 \xc2\xb5s \xc2\xb1 74.2 ns per loop (mean \xc2\xb1 std. dev. of 7 runs, 100000 loops each)\nregex: 1.93 \xc2\xb5s \xc2\xb1 23.8 ns per loop (mean \xc2\xb1 std. dev. of 7 runs, 1000000 loops each)\nin: 3.32 \xc2\xb5s \xc2\xb1 74.6 ns per loop (mean \xc2\xb1 std. dev. of 7 runs, 100000 loops each)\npattern in front of string\nfind: 748 ns \xc2\xb1 15.6 ns per loop (mean \xc2\xb1 std. dev. of 7 runs, 1000000 loops each)\nregex: 2.03 \xc2\xb5s \xc2\xb1 21.1 ns per loop (mean \xc2\xb1 std. dev. of 7 runs, 100000 loops each)\nin: 589 ns \xc2\xb1 6.75 ns per loop (mean \xc2\xb1 std. dev. of 7 runs, 1000000 loops each)\n
Run Code Online (Sandbox Code Playgroud)\n\n

摘要:findandin取决于字符串长度和模式在字符串中的位置,而在regex某种程度上与字符串长度无关,并且对于末尾带有模式的非常长的字符串来说速度更快。

\n


Nar*_*ann 9

只是为了完成有关正则表达式编译时间的最高投票答案问题,这里有一个带有预编译模式的版本:

from timeit import timeit
import re

def find(string, text):
    if string.find(text) > -1:
        pass

def re_find(string, text_re):
    if text_re.match(string):
        pass

def best_find(string, text):
    if text in string:
       pass

print timeit("find(string, text)", "from __main__ import find; string='lookforme'; text='look'")  
print timeit("re_find(string, text_re)", "from __main__ import re_find; string='lookforme'; import re; text_re=re.compile('look')")  
print timeit("best_find(string, text)", "from __main__ import best_find; string='lookforme'; text='look'")
Run Code Online (Sandbox Code Playgroud)

还有我的数字:

0.189274072647
0.239935874939
0.0820939540863
Run Code Online (Sandbox Code Playgroud)

预编译模式提高了数字,但仍然in更快。


Ben*_*Ben 8

如果你一遍又一遍地搜索同样的东西,re.compile会加速正则表达式.但是我通过在匹配之前使用"in"来剔除不良案例,我获得了巨大的加速.轶事,我知道.〜奔


小智 5

我遇到了同样的问题.我使用Jupyter的%timeit来检查:

import re
sent = "a sentence for measuring a find function"
sent_list = sent.split()
print("x in sentence")
%timeit "function" in sent
print("x in token list")
%timeit "function" in sent_list

print("regex search")
%timeit bool(re.match(".*function.*", sent))
print("compiled regex search")
regex = re.compile(".*function.*")
%timeit bool(regex.match(sent))
Run Code Online (Sandbox Code Playgroud)

句子中的x为每循环61.3 ns±3 ns(平均值±标准偏差,7次运行,每次10000000次循环)

令牌列表中的x每循环93.3 ns±1.26 ns(平均值±标准偏差,7次运行,每次10000000次循环)

正则表达式搜索每循环772 ns±8.42 ns(平均值±标准偏差,7次运行,每次1000000次循环)

编译正则表达式搜索每循环420 ns±7.68 ns(平均值±标准偏差,7次运行,每次1000000次循环)

编译速度很快但是简单的更好.