使用RGUI.我有一个名为Data的数据集.我感兴趣的响应变量包含在第一列中Data
.
我有训练套Data
叫DataTrain
和DataTest
.
随着DataTrain
我训练神经网络模型(称为DataNN
使用包和功能)neuralnet
.
> DataNN = neuralnet(DataTrain[,1] ~ DataTrain[,2] + DataTrain[,3], hidden = 1,
data = DataTrain)
Run Code Online (Sandbox Code Playgroud)
有谁知道如何使用测试集(DataTest
)在此模型上创建预测?
通常(对于其他型号)我会用predict()
它.例如
> DataPred = predict(DataNN, DataTest)
Run Code Online (Sandbox Code Playgroud)
但是当neuralnet
我这样做时,我得到:
> DataPred = predict(DataNN, DataTest)
Error in UseMethod("predict") :
no applicable method for 'predict' applied to an object of class "nn"
Run Code Online (Sandbox Code Playgroud)
显然我无法运行predict()
这个模型.有谁知道任何替代品?
我检查了帮助neuralnet
,我找到了一个prediction
在文档第12页中调用的方法.我认为这根本不是我想要的,或者至少我不知道如何将它应用到我的身上Data
.
任何帮助将不胜感激(如果有任何解决方案).
小智 21
该计算方法做了你是什么之后,我复制从帮助文件这个例子并增加了一些意见:
# Make Some Training Data
Var1 <- runif(50, 0, 100)
# create a vector of 50 random values, min 0, max 100, uniformly distributed
sqrt.data <- data.frame(Var1, Sqrt=sqrt(Var1))
# create a dataframe with two columns, with Var1 as the first column
# and square root of Var1 as the second column
# Train the neural net
print(net.sqrt <- neuralnet(Sqrt~Var1, sqrt.data, hidden=10, threshold=0.01))
# train a neural net, try and predict the Sqrt values based on Var1 values
# 10 hidden nodes
# Compute or predict for test data, (1:10)^2
compute(net.sqrt, (1:10)^2)$net.result
# What the above is doing is using the neural net trained (net.sqrt),
# if we have a vector of 1^2, 2^2, 3^2 ... 10 ^2 (i.e. 1, 4, 9, 16, 25 ... 100),
# what would net.sqrt produce?
Output:
$net.result
[,1]
[1,] 1.110635110
[2,] 1.979895765
[3,] 3.013604598
[4,] 3.987401275
[5,] 5.004621316
[6,] 5.999245742
[7,] 6.989198741
[8,] 8.007833571
[9,] 9.016971015
[10,] 9.944642147
# The first row corresponds to the square root of 1, second row is square root
# of 2 and so on. . . So from that you can see that net.sqrt is actually
# pretty close
# Note: Your results may vary since the values of Var1 is generated randomly.
Run Code Online (Sandbox Code Playgroud)