Aji*_*kya 1 python machine-learning object-detection deep-learning tensorflow
我指的是Tensorflow对象检测API(https://github.com/tensorflow/models/tree/master/research/object_detection):这是我正在使用的检测代码的IPython笔记本(https://github.com/ tensorflow / models / blob / master / research / object_detection / object_detection_tutorial.ipynb)。在此文件中,输出值设置为绘制框的概率大于50%检测代码:
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
#myFile = open('example2.csv', 'w')
i=0
#boxeslist=[]
new_boxes = []
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
Run Code Online (Sandbox Code Playgroud)
如何更改代码,以便它以大于10%的概率在对象周围输出框
应该很容易。
如您所见,本教程将调用函数“ vis_util.visualize_boxes_and_labels_on_image_array”,其参数为:
image
boxes
classes
scores
category_index
use_normalized_coordinates
line_thickness
Run Code Online (Sandbox Code Playgroud)
如果在文件“ research / object_detection / utilis / visualization_utils.py”内搜索,则可以找到该函数,并看到可以设置其他参数。
您可以在其中找到:min_score_tresh设置为.5
如果您设置:
min_score_tresh=.1
Run Code Online (Sandbox Code Playgroud)
应该获得期望的结果。
小心,原因将是
| 归档时间: |
|
| 查看次数: |
1683 次 |
| 最近记录: |