Tensorflow对象检测API:概率小于50%的输出框

Aji*_*kya 1 python machine-learning object-detection deep-learning tensorflow

我指的是Tensorflow对象检测API(https://github.com/tensorflow/models/tree/master/research/object_detection):这是我正在使用的检测代码的IPython笔记本(https://github.com/ tensorflow / models / blob / master / research / object_detection / object_detection_tutorial.ipynb)。在此文件中,输出值设置为绘制框的概率大于50%检测代码:

with detection_graph.as_default():
  with tf.Session(graph=detection_graph) as sess:
    # Definite input and output Tensors for detection_graph
    image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
    # Each box represents a part of the image where a particular object was detected.
    detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
    # Each score represent how level of confidence for each of the objects.
    # Score is shown on the result image, together with the class label.
    detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
    detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
    num_detections = detection_graph.get_tensor_by_name('num_detections:0')

    #myFile = open('example2.csv', 'w')
    i=0
    #boxeslist=[]
    new_boxes = []
    for image_path in TEST_IMAGE_PATHS:
      image = Image.open(image_path)
      # the array based representation of the image will be used later in order to prepare the
      # result image with boxes and labels on it.
      image_np = load_image_into_numpy_array(image)
      # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
      image_np_expanded = np.expand_dims(image_np, axis=0)
      # Actual detection.
      (boxes, scores, classes, num) = sess.run(
          [detection_boxes, detection_scores, detection_classes, num_detections],
          feed_dict={image_tensor: image_np_expanded})
      # Visualization of the results of a detection.
      vis_util.visualize_boxes_and_labels_on_image_array(
          image_np,
          np.squeeze(boxes),
          np.squeeze(classes).astype(np.int32),
          np.squeeze(scores),
          category_index,
          use_normalized_coordinates=True,
          line_thickness=8)

      plt.figure(figsize=IMAGE_SIZE)
      plt.imshow(image_np)
Run Code Online (Sandbox Code Playgroud)

如何更改代码,以便它以大于10%的概率在对象周围输出框

Spl*_*t92 6

应该很容易。

如您所见,本教程将调用函数“ vis_util.visualize_boxes_and_labels_on_image_array”,其参数为:

image
boxes
classes
scores
category_index
use_normalized_coordinates
line_thickness
Run Code Online (Sandbox Code Playgroud)

如果在文件“ research / object_detection / utilis / visualization_utils.py”内搜索,则可以找到该函数,并看到可以设置其他参数。

您可以在其中找到:min_score_tresh设置为.5

如果您设置:

min_score_tresh=.1
Run Code Online (Sandbox Code Playgroud)

应该获得期望的结果。

小心,原因将是