Mat*_*ieu 2 python optimization mathematical-optimization scipy
我的程序:
# -*- coding: utf-8 -*-
import numpy as np
import itertools
from scipy.optimize import minimize
global width
width = 0.3
def time_builder(f, t0=0, tf=300):
return list(np.round(np.arange(t0, tf, 1/f*1000),3))
def duo_stim_overlap(t1, t2):
"""
Function taking 2 timelines build by time_builder function in input
and returning the ids of overlapping pulses between the 2.
len(t1) < len(t2)
"""
pulse_id_t1 = [x for x in range(len(t1)) for y in range(len(t2)) if abs(t1[x] - t2[y]) < width]
pulse_id_t2 = [x for x in range(len(t2)) for y in range(len(t1)) if abs(t2[x] - t1[y]) < width]
return pulse_id_t1, pulse_id_t2
def optimal_delay(s):
frequences = [20, 60, 80, 250, 500]
t0 = 0
tf = 150
delay = 0 # delay between signals,
timelines = list()
overlap = dict()
for i in range(len(frequences)):
timelines.append(time_builder(frequences[i], t0+delay, tf))
overlap[i] = list()
delay += s
for subset in itertools.combinations(timelines, 2):
p1_stim, p2_stim = duo_stim_overlap(subset[0], subset[1])
overlap[timelines.index(subset[0])] += p1_stim
overlap[timelines.index(subset[1])] += p2_stim
optim_param = 0
for key, items in overlap.items():
optim_param += (len(list(set(items)))/len(timelines[key]))
return optim_param
res = minimize(optimal_delay, 1.5, method='Nelder-Mead', tol = 0.01, bounds = [(0, 5)], options={'disp': True})
Run Code Online (Sandbox Code Playgroud)
所以我的目标是最小化optim_param由函数optimal_delay 计算的值。首先,梯度方法不做任何事情。他们在第一次迭代时停止。其次,我需要为最佳延迟的 s 值设置界限(例如,介于 0 和 5 之间)。我知道 Nelder-Mead 单纯形方法不可能,但其他方法根本不起作用。第三,我真的不知道如何设置终止参数 tol 。Bottol = 0.01并tol = 0.0000001没有给我好的结果。(和真正接近的)。最后,例如,如果我从 1.8 开始,最小化函数会给我一个远非最小值的值......
我究竟做错了什么?