Del*_*ela 4 text-processing nlp nltk python-3.x jupyter-notebook
我对 python 环境(jupyter notebook)很陌生,我正在尝试处理相对庞大的文本数据。我想通过应用以下步骤并按相同顺序来处理它:
去除空格、小写、词干、去除标点符号但保留词内破折号或连字符、去除停用词、去除符号、去除空格、
我希望我可以得到一个可以执行任务的函数,而不是单独执行它们,是否有任何单个库和/或函数可以提供帮助?如果不是,那么定义一个函数来执行它们的最简单方法是什么?
正如评论中提到的,可以使用 Python 中多个库的组合来完成。一个可以执行所有操作的函数可能如下所示:
import nltk
import re
import string
from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer # or LancasterStemmer, RegexpStemmer, SnowballStemmer
default_stemmer = PorterStemmer()
default_stopwords = stopwords.words('english') # or any other list of your choice
def clean_text(text, ):
def tokenize_text(text):
return [w for s in sent_tokenize(text) for w in word_tokenize(s)]
def remove_special_characters(text, characters=string.punctuation.replace('-', '')):
tokens = tokenize_text(text)
pattern = re.compile('[{}]'.format(re.escape(characters)))
return ' '.join(filter(None, [pattern.sub('', t) for t in tokens]))
def stem_text(text, stemmer=default_stemmer):
tokens = tokenize_text(text)
return ' '.join([stemmer.stem(t) for t in tokens])
def remove_stopwords(text, stop_words=default_stopwords):
tokens = [w for w in tokenize_text(text) if w not in stop_words]
return ' '.join(tokens)
text = text.strip(' ') # strip whitespaces
text = text.lower() # lowercase
text = stem_text(text) # stemming
text = remove_special_characters(text) # remove punctuation and symbols
text = remove_stopwords(text) # remove stopwords
#text.strip(' ') # strip whitespaces again?
return text
Run Code Online (Sandbox Code Playgroud)
使用(Python2.7,但也可以在 Python3 中使用)进行测试:
text = ' Test text !@$%$(%)^ just words and word-word'
clean_text(text)
Run Code Online (Sandbox Code Playgroud)
结果是:
u'test text word word-word'
Run Code Online (Sandbox Code Playgroud)