我正在尝试将以下数据集转换为第二个数据集。基本上,我试图在每个ID与该ID之间填写NA。
每个ID对应两个时间戳,我将它们加入了较大的date_time列。出于可复制性的目的,在连接之间执行sql(date_time列非常大),甚至获取原始数据集并在每个id之间创建时间戳,然后将其加入(我有太多的时间),在计算上过于昂贵ID即可)。我已经成功完成了这两种方法,而我拥有的数据量却花费了太多时间。我希望使用此数据集来处理数据。看起来很简单,但这确实让我感到困惑。任何帮助,将不胜感激。
当前数据集:
date_time id
<dttm> <dbl>
1 2017-01-30 08:00:00 NA
2 2017-01-30 08:00:01 NA
3 2017-01-30 08:00:02 1
4 2017-01-30 08:00:03 NA
5 2017-01-30 08:00:04 NA
6 2017-01-30 08:00:05 NA
7 2017-01-30 08:00:06 NA
8 2017-01-30 08:00:07 1
9 2017-01-30 08:00:08 NA
10 2017-01-30 08:00:09 NA
11 2017-01-30 08:00:10 2
12 2017-01-30 08:00:11 NA
13 2017-01-30 08:00:12 NA
14 2017-01-30 08:00:13 NA
15 2017-01-30 08:00:14 2
16 2017-01-30 08:00:15 NA
17 2017-01-30 08:00:16 3
18 2017-01-30 08:00:17 NA
19 2017-01-30 08:00:18 3
20 2017-01-30 08:00:19 NA
Run Code Online (Sandbox Code Playgroud)
所需数据集:
date_time id
<dttm> <dbl>
1 2017-01-30 08:00:00 NA
2 2017-01-30 08:00:01 NA
3 2017-01-30 08:00:02 1
4 2017-01-30 08:00:03 1
5 2017-01-30 08:00:04 1
6 2017-01-30 08:00:05 1
7 2017-01-30 08:00:06 1
8 2017-01-30 08:00:07 1
9 2017-01-30 08:00:08 NA
10 2017-01-30 08:00:09 NA
11 2017-01-30 08:00:10 2
12 2017-01-30 08:00:11 2
13 2017-01-30 08:00:12 2
14 2017-01-30 08:00:13 2
15 2017-01-30 08:00:14 2
16 2017-01-30 08:00:15 NA
17 2017-01-30 08:00:16 3
18 2017-01-30 08:00:17 3
19 2017-01-30 08:00:18 3
20 2017-01-30 08:00:19 NA
Run Code Online (Sandbox Code Playgroud)
dput()日期:
structure(list(date_time = structure(c(1485781200, 1485781201,
1485781202, 1485781203, 1485781204, 1485781205, 1485781206, 1485781207,
1485781208, 1485781209, 1485781210, 1485781211, 1485781212, 1485781213,
1485781214, 1485781215, 1485781216, 1485781217, 1485781218, 1485781219
), class = c("POSIXct", "POSIXt"), tzone = ""), trx_id = c(NA_real_,
NA_real_, 1, NA_real_, NA_real_, NA_real_, NA_real_, 1,
NA_real_, NA_real_, 2, NA_real_, NA_real_, NA_real_, 2,
NA_real_, 3, NA_real_, 3, NA_real_)), .Names = c("date_time",
"trx_id"), row.names = c(NA, -20L), class = c("tbl_df", "tbl",
"data.frame"))
Run Code Online (Sandbox Code Playgroud)
一种解决方案可能是使用中的fill功能tidyr。该方法很简单。首先创建2列,每列分别为prev和next值。用于fill在两列中填充缺失值。
现在,对于行这两者具有相同的值prev_val和next_val该值应与被更新prev_val(即装置的那些缺失值是相同数量之间)
df <- read.table(text = "sl date_time, value
1 '2017-01-30 08:00:00' NA
2 '2017-01-30 08:00:01' NA
3 '2017-01-30 08:00:02' 1
4 '2017-01-30 08:00:03' NA
5 '2017-01-30 08:00:04' NA
6 '2017-01-30 08:00:05' NA
7 '2017-01-30 08:00:06' NA
8 '2017-01-30 08:00:07' 1
9 '2017-01-30 08:00:08' NA
10 '2017-01-30 08:00:09' NA
11 '2017-01-30 08:00:10' 2
12 '2017-01-30 08:00:11' NA
13 '2017-01-30 08:00:12' NA
14 '2017-01-30 08:00:13' NA
15 '2017-01-30 08:00:14' 2
16 '2017-01-30 08:00:15' NA
17 '2017-01-30 08:00:16' 3
18 '2017-01-30 08:00:17' NA
19 '2017-01-30 08:00:18' 3
20 '2017-01-30 08:00:19' NA", header = T, stringsAsFactor = F)
#use fill to find missing values
df %>%
mutate(prev_val = (value), next_val = (value)) %>%
fill(prev_val, .direction = "down") %>%
fill(next_val, .direction = "up") %>%
mutate(value = ifelse(prev_val == next_val, prev_val, value )) %>%
select(-prev_val, -next_val)
Result:
sl date_time. value
1 1 2017-01-30 08:00:00 NA
2 2 2017-01-30 08:00:01 NA
3 3 2017-01-30 08:00:02 1
4 4 2017-01-30 08:00:03 1
5 5 2017-01-30 08:00:04 1
6 6 2017-01-30 08:00:05 1
7 7 2017-01-30 08:00:06 1
8 8 2017-01-30 08:00:07 1
9 9 2017-01-30 08:00:08 NA
10 10 2017-01-30 08:00:09 NA
11 11 2017-01-30 08:00:10 2
12 12 2017-01-30 08:00:11 2
13 13 2017-01-30 08:00:12 2
14 14 2017-01-30 08:00:13 2
15 15 2017-01-30 08:00:14 2
16 16 2017-01-30 08:00:15 NA
17 17 2017-01-30 08:00:16 3
18 18 2017-01-30 08:00:17 3
19 19 2017-01-30 08:00:18 3
20 20 2017-01-30 08:00:19 NA
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
142 次 |
| 最近记录: |