Jos*_*yne 1 python machine-learning mnist conv-neural-network tensorflow
我是机器学习的新手,我一直在关注 Tensorflow 官方 MNIST 模型(https://github.com/tensorflow/models/tree/master/official/mnist)。在训练模型 3 个时期并获得超过 98% 的准确率结果后,我决定用我自己的一些手写图像来测试数据集,这些图像与 MNIST 数据集中的图像非常接近:
{'loss': 0.03686057, 'global_step': 2400, 'accuracy': 0.98729998}
Run Code Online (Sandbox Code Playgroud)
手写 1,预测为 2:https : //storage.googleapis.com/imageexamples/example1.png
手写 4,预测为 5:https : //storage.googleapis.com/imageexamples/example4.png
手写 7,正确预测为 7:https : //storage.googleapis.com/imageexamples/example7.png
但是,正如您在下面看到的,预测大多是不正确的。任何人都可以分享一些关于为什么会这样的见解吗?如果您需要任何其他信息,请告诉我。谢谢!
[2 5 7]
Result for output key probabilities:
[[ 1.47042423e-01 1.40417784e-01 2.80471593e-01 1.18162427e-02
1.71029475e-02 1.15245730e-01 9.41787264e-04 1.71402004e-02
2.61987478e-01 7.83374347e-03]
[ 3.70134876e-05 3.59491096e-03 1.70885725e-03 3.44008535e-01
1.75098982e-02 6.24581575e-01 1.02930271e-05 3.97418407e-05
7.59732258e-03 9.11886105e-04]
[ 7.62941269e-03 7.74145573e-02 1.42017215e-01 4.73754480e-03
3.75231934e-06 7.16139004e-03 4.40478354e-04 7.60131121e-01
4.09408152e-04 5.51677040e-05]]
Run Code Online (Sandbox Code Playgroud)
这是我用来将 png 转换为 npy 数组以进行测试的脚本。所提供的“3”和“5”图像的结果数组与 TF 存储库中给出的数组相同,所以我认为这不是问题:
def main(unused_argv):
output = []
images = []
filename_generate = True
index = 0
if FLAGS.images is not None:
images = str.split(FLAGS.images)
if FLAGS.output is not "": # check for output names and make sure outputs map to images
output = str.split(FLAGS.output)
filename_generate = False
if len(output) != len(images):
raise ValueError('The number of image files and output files must be the same.')
if FLAGS.batch == "True":
combined_arr = np.array([]) # we'll be adding up arrays
for image_name in images:
input_image = Image.open(image_name).convert('L') # convert to grayscale
input_image = input_image.resize((28, 28)) # resize the image, if needed
width, height = input_image.size
data_image = array('B')
pixel = input_image.load()
for x in range(0,width):
for y in range(0,height):
data_image.append(pixel[y,x]) # use the MNIST format
np_image = np.array(data_image)
img_arr = np.reshape(np_image, (1, 28, 28))
img_arr = img_arr/float(255) # use scale of [0, 1]
if FLAGS.batch != "True":
if filename_generate:
np.save("image"+str(index), img_arr) # save each image with random filenames
else:
np.save(output[index], img_arr) # save each image with chosen filenames
index = index+1
else:
if combined_arr.size == 0:
combined_arr = img_arr
else:
combined_arr = np.concatenate((combined_arr, img_arr), axis=0) # add all image arrays to one array
if FLAGS.batch == "True":
if filename_generate:
np.save("images"+str(index), combined_arr) # save batched images with random filename
else:
np.save(output[0], combined_arr) # save batched images with chosen filename
Run Code Online (Sandbox Code Playgroud)
除了 epoch 数(以前是 40 次,更改是因为训练时间太长并且在 1 个 epoch 后已经看到高精度),我在官方的 MNIST 模型中没有改变任何东西。
非常感谢!
归档时间: |
|
查看次数: |
656 次 |
最近记录: |