我经常希望执行tidyr::spread并按dplyr::summarise"单步"按组聚合数据.我想要的是显示的expected.我可以expected通过执行summarise和spread单独进行并将结果与a相结合,dplyr::full_join但我正在寻找避免full_join的替代方法.不需要真正的单步骤方法.
df <- data.frame(
id = rep(letters[1], 2),
val1 = c(10, 20),
val2 = c(100, 200),
key = c("A", "B"),
value = c(1, 2))
library(tidyverse)
result1 <- df %>%
group_by(id) %>%
summarise(
val1 = min(val1),
val2 = max(val2)
)
# A tibble: 1 x 3
# id val1 val2
# <fctr> <dbl> <dbl>
# 1 a 10.0 200
result2 <- df %>%
select(id, key, value) %>%
group_by(id) %>%
spread(key, value)
# A tibble: 1 x 3
# Groups: id [1]
# id A B
# * <fctr> <dbl> <dbl>
# 1 a 1.00 2.00
expected <- full_join(result1, result2, by="id")
# A tibble: 1 x 5
# id val1 val2 A B
# <fctr> <dbl> <dbl> <dbl> <dbl>
# 1 a 10.0 200 1.00 2.00
Run Code Online (Sandbox Code Playgroud)
我怀疑你的数据可能有需要进行一些修改更边缘的情况下,但你为什么不干脆spread然后summarise?您可以为每个变量分别指定汇总函数,所以A并B在那里你实际上并不需要计算什么(我假设),你可以删除所有NA:
df %>%
spread("key", "value") %>%
group_by(id) %>%
summarise(
val1 = min(val1),
val2 = max(val2),
A = mean(A, na.rm = TRUE),
B = mean(B, na.rm = TRUE)
)
# A tibble: 1 x 5
id val1 val2 A B
<fct> <dbl> <dbl> <dbl> <dbl>
1 a 10.0 200 1.00 2.00
Run Code Online (Sandbox Code Playgroud)