Rah*_*hul 2 python multiprocessing computer-vision pytorch
我正在尝试使用python的multiprocessing Pool方法pytorch来处理图像。这是代码:
from multiprocessing import Process, Pool
from torch.autograd import Variable
import numpy as np
from scipy.ndimage import zoom
def get_pred(args):
img = args[0]
scale = args[1]
scales = args[2]
img_scale = zoom(img.numpy(),
(1., 1., scale, scale),
order=1,
prefilter=False,
mode='nearest')
# feed input data
input_img = Variable(torch.from_numpy(img_scale),
volatile=True).cuda()
return input_img
scales = [1,2,3,4,5]
scale_list = []
for scale in scales:
scale_list.append([img,scale,scales])
multi_pool = Pool(processes=5)
predictions = multi_pool.map(get_pred,scale_list)
multi_pool.close()
multi_pool.join()
Run Code Online (Sandbox Code Playgroud)
我收到此错误:
`RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method
Run Code Online (Sandbox Code Playgroud)
在这一行:
predictions = multi_pool.map(get_pred,scale_list)
Run Code Online (Sandbox Code Playgroud)
谁能告诉我我在做什么错?
我建议您阅读 multiprocessing 模块的文档,尤其是本节。您必须通过调用 来更改子流程的创建方式set_start_method。摘自那些引用的文档:
import multiprocessing as mp
def foo(q):
q.put('hello')
if __name__ == '__main__':
mp.set_start_method('spawn')
q = mp.Queue()
p = mp.Process(target=foo, args=(q,))
p.start()
print(q.get())
p.join()
Run Code Online (Sandbox Code Playgroud)
如pytorch文档中所述,处理多重处理的最佳做法是使用torch.multiprocessing而不是multiprocessing。
请注意,只有在Python 3中,使用start方法spawn或forkserver作为start方法,才支持在进程之间共享CUDA张量。
在不修改代码的情况下,正在解决的错误的替代方法是
from multiprocessing import Process, Pool
Run Code Online (Sandbox Code Playgroud)
与:
from torch.multiprocessing import Pool, Process, set_start_method
try:
set_start_method('spawn')
except RuntimeError:
pass
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
10722 次 |
| 最近记录: |