Bry*_*ind 4 python group-by pyspark spark-dataframe
我有一个pyspark数据框。我必须进行分组,然后将某些列聚合到列表中,以便可以在数据框架上应用UDF。
例如,我创建了一个数据框,然后按人员分组。
df = spark.createDataFrame(a, ["Person", "Amount","Budget", "Date"])
df = df.groupby("Person").agg(F.collect_list(F.struct("Amount", "Budget", "Date")).alias("data"))
df.show(truncate=False)
+------+----------------------------------------------------------------------------+
|Person|data |
+------+----------------------------------------------------------------------------+
|Bob |[[85.8,Food,2017-09-13], [7.8,Household,2017-09-13], [6.52,Food,2017-06-13]]|
+------+----------------------------------------------------------------------------+
Run Code Online (Sandbox Code Playgroud)
我省略了UDF,但下面是UDF的结果数据框。
+------+--------------------------------------------------------------+
|Person|res |
+------+--------------------------------------------------------------+
|Bob |[[562,Food,June,1], [380,Household,Sept,4], [880,Food,Sept,2]]|
+------+--------------------------------------------------------------+
Run Code Online (Sandbox Code Playgroud)
我需要将结果数据帧转换为行,其中列表中的每个元素都是带有新列的新行。可以在下面看到。
+------+------------------------------+
|Person|Amount|Budget |Month|Cluster|
+------+------------------------------+
|Bob |562 |Food |June |1 |
|Bob |380 |Household|Sept |4 |
|Bob |880 |Food |Sept |2 |
+------+------------------------------+
Run Code Online (Sandbox Code Playgroud)
您可以使用explode
和getItem
如下:
# starting from this form:
+------+--------------------------------------------------------------
|Person|res |
+------+--------------------------------------------------------------+
|Bob |[[562,Food,June,1], [380,Household,Sept,4], [880,Food,Sept,2]]|
+------+--------------------------------------------------------------+
import pyspark.sql.functions as F
# explode res to have one row for each item in res
exploded_df = df.select("*", F.explode("res").alias("exploded_data"))
exploded_df.show(truncate=False)
# then use getItem to create separate columns
exploded_df = exploded_df.withColumn(
"Amount",
F.col("exploded_data").getItem("Amount") # either get by name or by index e.g. getItem(0) etc
)
exploded_df = exploded_df.withColumn(
"Budget",
F.col("exploded_data").getItem("Budget")
)
exploded_df = exploded_df.withColumn(
"Month",
F.col("exploded_data").getItem("Month")
)
exploded_df = exploded_df.withColumn(
"Cluster",
F.col("exploded_data").getItem("Cluster")
)
exploded_df.select("Person", "Amount", "Budget", "Month", "Cluster").show(10, False)
+------+------------------------------+
|Person|Amount|Budget |Month|Cluster|
+------+------------------------------+
|Bob |562 |Food |June |1 |
|Bob |380 |Household|Sept |4 |
|Bob |880 |Food |Sept |2 |
+------+------------------------------+
Run Code Online (Sandbox Code Playgroud)
然后,您可以删除不必要的列。希望这有帮助,祝你好运!